• Title/Summary/Keyword: safety-focused evaluation

Search Result 233, Processing Time 0.034 seconds

Study on Side Impact Test Procedure of Hydrogen Bus (수소버스 측면충돌 시험방법 연구)

  • Kim, Kyungjin;Shin, Jaeho;Han, Kyeonghee;In, Jeong Min;Shim, Sojung;Kim, Siwoo
    • Journal of Auto-vehicle Safety Association
    • /
    • v.13 no.4
    • /
    • pp.92-98
    • /
    • 2021
  • Recently hydrogen fuel cell buses have been deployed for the public transportations. In order to introduce buses fueled by hydrogen successfully, the research results of hydrogen bus safety should be discussed and investigated significantly. Especially, Korean government drives research in terms of various applications of hydrogen energy to replace the conventional fuel energy resources and to improve the safety evaluation. Thus it is necessary to examine vehicle crashworthiness under side impact loadings. This study was focused on the simulation result evaluation of full bus model and simplified bus model with hydrogen fuel tank module and mounting system located below floor structure due to the significance of bus side impact accidents. The finite element models of hydrogen bus, fuel tank system and side impact moving barrier were set up and simulation results reported model performance and result comparison of two side impact models. Computational results and research discussion showed the conceptual side impact framework to evaluate hydrogen bus crashworthiness.

Evaluation on Optimal Height of the Bin Wall using Stability Analysis (안정해석을 통한 공동 일체식 옹벽의 최적높이 평가)

  • Bae, Woo-Seok
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.2
    • /
    • pp.48-54
    • /
    • 2009
  • Structures to support against slop failures or resist earth pressure like masonry retaining walls or retaining walls have continued to advance and evolve to new eco-friendly, easy-to-construct, crib retaining walls with varied forms and construction methods, meeting the needs of the times. Researches until now, however, have focused on the analyses of site displacement or stability of the whole site including structures like retaining walls, and thus, researches on rational design or method for stability analysis are lacking. Therefore, this study was conducted on a number of stability analyses, such as the visual power line or stability on sliding, being presented for bin walls, which enable vegetation to grow and were developed and applied in varied forms, meeting the development demands for eco-friendly retaining wall structures. This study compared the results of stability analyses, determined their feasibility, and evaluated their stability according to the height and facade slope of retaining walls. According to the results of this study, traditional masonry retaining wall analysis showed rather conservative stability evaluation results in the stability evaluation of bin walls, and the method using the visual power line seems to be objective because it produced similar results to the stability evaluation method on sliding or turnover.

Development of a Neural Network Expert System for Safety Analysis of Structures Adjacent to Tunnel Excavation Sites Focused on Development and Reliability Evaluation of Expert System (터널굴착 현장에 인접한 지상구조물의 안전성 평가용 전문가 시스템의 개발 (1) -전문가 시스템 개발 및 신뢰성 검증을 중심으로)

  • 배규진;신휴성
    • Geotechnical Engineering
    • /
    • v.14 no.2
    • /
    • pp.107-126
    • /
    • 1998
  • Ground settlements induced by tunnel excavation cause the foundations of the neighboring building structures to deform. An expert system called NESASS( Neural network Expert System for Adjacent Structure Safety analysis) was developed to analyze the structural safety of such building structures. NESASS predicts the trend of ground settlements resulting from tunnel excavation and carries out a safety analysis for building structures on the basis of the predicted ground settlements. Using neural network technique. the NESASS learns the database consisting of the measured ground settlements collected from numerous actual fields and infers a settlement trend at the field of interest. The NESASS calculates the magnitudes of angular distortion, deflection ratio, and differential settlement of the structure. and in turn, determines the safety of the structure. In addition, the NESASS predicts the patterns of cracks to be formed in the structure, using Dulacska model for crack evaluation. In this study, the ground settlements measured from Seoul subway construction sites were collected and classified with respect to the major factors influencing ground settlement. Subsequently, a database of ground settlement due to tunnel excavation was built. A parametric study was performed to select the optimal neural network model for the database. A comparison of the ground settlement predicted by the NESASS with the measured ones indicates that the NESASS leads to reasonable predictions. The results of confidence evaluation for safety evaluation system of the NESASS are presented in this paper.

  • PDF

A Study on the Improvement of Evaluation Procedure for the Educational Facility Safety Certification (교육시설의 안전인증 평가절차 개선 연구)

  • Seung-Hoon, Han;Seung-Ju, Choe
    • Land and Housing Review
    • /
    • v.14 no.1
    • /
    • pp.99-114
    • /
    • 2023
  • This study was conducted to review the adequacy and applicability of the safety certification system for educational facilities which was implemented in 2021 and to derive possible improvements to the existing certification system. This study analyzed the existing certification system, examined similar systems from abroad, conducted interviews with certification experts, and presented the proposed improved system to experts for review and advice. The proposed model replaced the current certification process with three stages of follow-up management. This allows for problems that may occur in the evaluation process and the composition of evaluators to be prevented by applying a feedback system. In the review stage of the newly proposed certification system, certification experts recommended specifying the detailed standards of certification performance such as criteria for selecting examiners and arbitrators. They concluded that there were no fatal flaws in the overall structure of the evaluation system. According to the results of this review, the proposed evaluation system was proven to be an effective improvement to the existing system.

A study on evaluation of physical safety factors for the Age-Friendly City - Focused on Five Urban Communities in Seoul - (고령친화도시 조성을 위한 물리적 안전요소 평가에 대한 연구 - 서울시 5개 생활권역을 중심으로 -)

  • Park, Jong-Young
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.34 no.3
    • /
    • pp.117-128
    • /
    • 2018
  • The purpose of this study is to identify the physical safety factors and indicators needed to create an age-friendly city where elderly people can live safely and continuously in the era of aging and to evaluate the differences between the five urban communities. For the study, AHP analysis was conducted to calculate the importance of factors and indicators, based on a checklist was made this. A questionnaire survey was conducted on the degree of physical safety perceived by the elderly people aged 65 and older living in Seoul, the difference between the five urban communities in Seoul was confirmed. The research finding are summarized as follows: The score of evaluating grade was the highest in the northwest, northeast was the lowest followed by the northwest, downtown, southeast, southwest, northeast. Among the physical safety factors, the safety of outdoor spaces and buildings was the highest in the downtown and the lowest in the southwest. On pedestrian safety, the downtown was the highest and the lowest was northeast. Regards to the transportation safety, the northwest was the highest and the northeast was the lowest. Housing security was the best in the northwest and the lowest was the northeast.

Determination of safe levels and toxic levels for feed hazardous materials in broiler chickens: a review

  • Jong Hyuk Kim
    • Journal of Animal Science and Technology
    • /
    • v.65 no.3
    • /
    • pp.490-510
    • /
    • 2023
  • Feed safety is needed to produce and provide safe animal feeds for consumers, animals, and the environment. Although feed safety regulations have been set for each country, there is a lack of clear feed safety regulations for each livestock. Feed safety regulations are mainly focused on heavy metals, mycotoxins, and pesticides. Each country has different safe levels of hazardous materials in diets. Safe levels of hazardous materials in diets are mostly set for mixed diets of general livestock. Although there is a difference in the metabolism of toxic materials among animals, the safe level of feed is not specific for individual animals. Therefore, standardized animal testing methods and toxicity studies for each animal are needed to determine the correct safe and toxic levels of hazardous materials in diets. If this goal is achieved, it will be possible to improve livestock productivity, health, and product safety by establishing appropriate feed safety regulations. It will also provide an opportunity to secure consumer confidence in feed and livestock products. Therefore, it is necessary to establish a scientific feed safety evaluation system suitable for each country's environment. The chance of outbreaks of new hazardous materials is increasing. Thus, to set up appropriate toxic levels or safe levels in feed, various toxicity methods have been used to determine toxic levels of hazardous materials for humans and animals. Appropriate toxic testing methods should be developed and used to accurately set up and identify toxicity and safe levels in food and feed.

A Study on Development of CPTED Evaluation Indicators and Assessment of Types in Neighboring Park - Focused on Neighborhood Parks in Busan - (근린공원 CPTED 적용을 위한 평가지표 개발 및 유형별 평가에 관한 연구 - 부산광역시 근린공원을 대상으로 -)

  • Sohn, Jee Hyun;Kim, Jong Gu;Kim, Yu Jun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.1
    • /
    • pp.237-254
    • /
    • 2015
  • Neighborhood Parks are important facilities for urban residents, which provide recreation and vitality to users. But it can degenerate into crime-ridden area in the absence of control system. Recently, Crime Prevention Through Environmental Design is confirmed to be effective for safety enhancement, Ministry of Land, Infrastructure and Transport promulgates enforcement regulation about urban parks and greens. In the enforcement regulation, consideration of CPTED in park design is mandatory. However, there is no systematic guideline for the application and continuous maintenance control. So we develop evaluation indicators of neighborhood park about CPTED, and verify the weighted value of the evaluation indicator through survey targeting related field experts. Then, we evaluate safety of neighborhood parks in Busan using developed evaluation indicators, by three types of CPTED application level. On the physical design elements Busan Citizen Park which applied CPTED method from the design phase received the remarkably hightest score, whereas, on the social elements score was investigated differently in accordance with characteristics of each park.

Resistance Model for Reliability Analysis of Existing Steel Girder Bridges (강거더 교량의 신뢰성해석을 위한 저항모델 개발)

  • Eom, Jun Sik
    • Journal of Applied Reliability
    • /
    • v.13 no.4
    • /
    • pp.241-252
    • /
    • 2013
  • Because of financial and safety concerns, there are needs for more accurate prediction of bridge behavior. Underestimation of the bridge load carrying capacity can have serious economic consequences, as deficient bridges must be repaired or rehabilitated. Therefore, the knowledge of the actual bridge behavior under live load may lead to a more realistic calculation of the load carrying capacity and eventually this may allow for more bridges to remain in service with or without minor repairs. The presented research is focused on the reliability evaluation of the actual load carrying capacity of existing bridges based on the field testing. Seventeen existing bridges were tested under truck load to confirm their adequacy of reliability. The actual response of existing bridge structures under live load is measured. Reliability analysis is performed on the selected representative bridges designed in accordance with AASHTO codes for bridge component (girder). Bridges are first evaluated based on the code specified values and design resistance. However, after the field testing program, it is possible to apply the experimental results into the bridge reliability evaluation procedures. Therefore, the actual response of bridge structures, including unintentional composite action, partial fixity of supports, and contribution of nonstructural members are considered in the bridge reliability evaluation. The girder distribution factors obtained from the tests are also applied in the reliability calculation. The results indicate that the reliability indices of selected bridges can be significantly increased by reducing uncertainties without sacrificing the safety of structures, by including the result of field measurement data into calculation.

Stress Wave Technique for Detecting Decay of Structural Members in Ancient Structures

  • Lee, Jun-Jae;Oh, Jung-Kwon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.27 no.4
    • /
    • pp.43-50
    • /
    • 1999
  • The safety-evaluation of ancient wood structures has been executed with only visual inspection. The application of NDE(nondestructive evaluation) is required because the visual inspection has many restrictions. Among many NDE techniques, the stress wave technique was used in this research. This study focused on evaluating the extent of decay in members of ancient structures, using stress wave nondestructive technique. For application of stress wave technique to ancient structures, the threshold time which divides members into categories according to degree of decay should be determined in advance. Stress wave timer (Metriguard Model 239A) was used in this study, specimens used in this research were the members obtained from six ancient structures. All specimens were identified as Hard Pine(Pinus densiflora S. et Z. or Pinus thunbergii P.) by microscope. Each member was tested with stress wave passing radially through the pith. In this study, the stress wave time of $12{\mu}s$/cm could distinguish between sound and decayed specimens with accuracy of 77.5 percent. Also, decayed specimens could be separated into moderate and severe categories by stress wave time of $20{\mu}s$/cm. Among the three decay location groups (exterior, mixed, interior), the exterior group could be classified into sound, moderate and severe decay with the greatest accuracy. Stress wave transit time was not sensitive to small decay pockets located in interior of the member.

  • PDF

The Evaluation of Reliability for the High Pressure Hydrogen Storage System of Fuel Cell Vehicle (연료전지자동차의 고압수소저장시스템 신뢰성 평가)

  • Jang, Gyu-Jin;Choi, Young-Min;Ahn, Byung-Ki;Lim, Tae-Won
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.19 no.4
    • /
    • pp.266-275
    • /
    • 2008
  • The performance improvement of each part for durability, safety and cost of high pressure storage system for fuel cell vehicle has been focused so far. However, for the mass production of fuel cell vehicle, it is necessary to evaluate durability and safety in system module and vehicle level. The test procedure to evaluate vibration and collision safety of high pressure hydrogen storage system for the fuel cell vehicle is established and its reliability is verified.