• Title/Summary/Keyword: safety work plate

Search Result 51, Processing Time 0.023 seconds

A Study on the Standardization of Test Method of Flat-Plate Liquid-heating Solar Collectors (액체식 평판형 태양열 집열기 성능 실험의 표준화에 관한 연구)

  • 윤석범
    • Journal of the Korean Society of Safety
    • /
    • v.5 no.3
    • /
    • pp.27-32
    • /
    • 1990
  • Standardization of solar collector test method is desirable for improvement solar collector quality and Valuation of collector thermal performance. In the present work, test loop proposed by Chun, is modified for convenience of test and obtained accurate collector thermal performance. An experimental investigation hat been carried out with a modified collector test loop under a real sun condition in order to confirm the utility of modified test loop and study the effect of variation of flow rate on thermal efficiency, the range of optimum flow rate and critical incident angle.

  • PDF

A Study on the Ultimate Strength Behaviour of Stiffened Plate according to the Stiffener Section

  • Ko Jae-Yogn;Park Joo-Shin;Park Sung-Hyeon
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2004.05b
    • /
    • pp.113-119
    • /
    • 2004
  • A steel plated is typically composed of plate panels. The overall failure of the structure is certainly affected and can be governed by the bulking and plastic collapse of these individual members In the ultimate limit state design. therefore. a primary task is to accurately calculate the budding and plastic collapse strength of such structural members. Structural elements making up steel palated structures do not work separately. resulting in high degree of redundancy and complexity in contrast to those of steel framed structures. To enable the behavior of such structures to be analyzed, simplifications or idealizations must essentially be made considering the accuracy need and degree of complexity of the analysis to be used Generally the more complex the analysis the greater is the accuracy that may be obtained. The aim of this study is the investigation of the effect of the tripping behaviour including section characteristic for a plate under uniaxial compression.

  • PDF

A Case Study on the Analysis of Soft Ground Consolidation by the Measurement of Surface Settlement Plate (지표침하판계측을 통한 연약지반 침하분석 사례연구)

  • Kim, Joon-Seok
    • Journal of Urban Science
    • /
    • v.9 no.2
    • /
    • pp.51-56
    • /
    • 2020
  • The installation of soft ground instruments and the performance of measurement and management of the measurement shall be carried out in order to ensure the safety of the construction work and to improve the quality of the construction work. The purpose of the pressure density deposition calculation is to determine the stability of the foundation ground and the formulation by measuring and calculating the density conditions generated on the soil through the period of neglect after completion of the soil at each stage. In practice, it is judged that the analysis by the hyperbolic method can be applied to the safety side.

Railway Underground Crossing Method Using PC Slab (직접 PC슬래브설치를 통한 철도지하횡단 공법의 적용 연구)

  • Min, Kyung-Ju;Lee, Bang-Woo;Park, Byung-Yong
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2439-2449
    • /
    • 2011
  • Existing grade crossings between railway and roadway area gradually changed to grade separation systems by the law. In the case of new roadway construction which crosses railways, it shall be grade separation system in principle. With the railway underground crossing method, many practices have been developed which can minimize rail displacements and avoid rail release. With these methods, the effects to the train can be reduced. The underground crossing methods can be identified as open-cut methods and non open-cut methods. The open-cut methods include temporary support methods and special rail construction methods. Also the non open-cut methods includes pipe roof methods, front jacking methods, messer shield methods, NTR methods and JES methods. Among these, the most suitable method is applied considering safety, economy, class of each rail system (train passing frequency and velocity), etc. In the non open-cut methods, the cost and duration shall be increased to keep existing rail system during construction. In the open-cut methods which use plate girders, the rail speed shall be restricted due to the displacement and vibration of the girder. In this study new grade separation methods were developed. With this method, the safety during construction can be increased. This method refines temporary support methods, but pc slab girder with huge stiffness is applied instead of plate girders. With this method, the rail displacement can be reduced and higher safety can be obtained during construction. Also construction cost and duration can be minimized because the temporary work and the overburden soil depth can be reduced.

  • PDF

Establishment of the design stress intensity value for the plate-type fuel assembly using a tensile test

  • Kim, Hyun-Jung;Tahk, Young-Wook;Jun, Hyunwoo;Kong, Eui-Hyun;Oh, Jae-Yong;Yim, Jeong-Sik
    • Nuclear Engineering and Technology
    • /
    • v.53 no.3
    • /
    • pp.911-919
    • /
    • 2021
  • In this paper, the design stress intensity values for the plate-type fuel assembly for research reactor are presented. Through a tensile test, the material properties of the cladding (aluminum alloy 6061) and structural material (aluminum alloy 6061-T6), in this case the yield and ultimate tensile strengths, Young's modulus and the elongation, are measured with the temperatures. The empirical equations of the material properties with respect to the temperature are presented. The cladding undergoes several heat treatments and hardening processes during the fabrication process. Cladding strengths are reduced compared to those of the raw material during annealing. Up to a temperature of 150 ℃, the strengths of the cladding do not significantly decrease due to the dislocations generated from the cold work. However, over 150 ℃, the mechanical strengths begin to decrease, mainly due to recrystallization, dislocation recovery and precipitate growth. Taking into account the uncertainty of the 95% probability and 95% confidence level, the design stress intensities of the cladding and structural materials are established. The presented design stress intensity values become the basis of the stress design criteria for a safety analysis of plate-type fuels.

A Study on the Actual Condition of Scaffolding Construction in Accordance with the Revision of Safety Standards (비계공사 안전기준 개정에 따른 현장적용 실태에 관한 연구)

  • Kim, Ja Yeon;Cho, Youn Hee
    • Journal of the Korean Society of Safety
    • /
    • v.35 no.4
    • /
    • pp.15-22
    • /
    • 2020
  • Scaffolding works are demolished after this structure is completed, and safety accidents often occur because they are installed differently from legal standards or frequently change during work. Therefore, in order to strengthen the safety of scaffolding, the Ministry of Land, Infrastructure and Transport required a need for design standards for temporary facilities that can systematically prevent and solve large-scale safety accidents that are repeatedly increasing during temporary construction. It has been enacted, and some contents have been revised for the past three years. However, construction site personnel do not know or know the revised matters, but often install scaffolding by the installer's experience rather than complying with relevant laws and regulations. It is the situation that the ground strength test of the foundation ground for the load applied to the floor of the column is omitted in most sites. Therefore, this study grasped the actual situation on the degree of recognition of the revised laws and regulations of the construction site and the foundation-based treatment of the floor working load of the scaffolding column, and derived problems. In addition, we intend to provide reference materials for the endurance test according to the ground conditions to small-scale small sites where it is difficult to conduct the test by carrying out the endurance test of the scaffolding ground according to the revised standards.

Safety assessment of generation III nuclear power plant buildings subjected to commercial aircraft crash part III: Engine missile impacting SC plate

  • Xu, Z.Y.;Wu, H.;Liu, X.;Qu, Y.G.;Li, Z.C.;Fang, Q.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.2
    • /
    • pp.417-428
    • /
    • 2020
  • Investigations of the commercial aircraft impact effect on nuclear island infrastructures have been drawing extensive attention, and this paper aims to perform the safety assessment of Generation III nuclear power plant (NPP) buildings subjected to typical commercial aircrafts crash. At present Part III, the local damage of the rigid components of aircraft, e.g., engine and landing gear, impacting the steel concrete (SC) structures of NPP containment is mainly discussed. Two typical SC target panels with the thicknesses of 40 mm and 100 mm, as well as the steel cylindrical projectile with a mass of 2.15 kg and a diameter of 80 mm are fabricated. By using a large-caliber air gas gun, both the projectile penetration and perforation test are conducted, in which the striking velocities were ranged from 96 m/s to 157 m/s. The bulging velocity and the maximal deflection of rear steel plate, as well as penetration depth of projectile are derived, and the local deformation and failure modes of SC panels are assessed experimentally. Then, the commercial finite element program LS-DYNA is utilized to perform the numerical simulations, by comparisons with the experimental and simulated projectile impact process and SC panel damage, the numerical algorithm, constitutive models and the corresponding parameters are verified. The present work can provide helpful references for the evaluation of the local impact resistance of NPP buildings against the aircraft engine.

Analysis on Thermoelastic Stress in the Cantilever Beam by Lock-in Thermography

  • Kang, K.S.;Choi, M.Y.;Park, J.H.;Kim, W.T.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.3
    • /
    • pp.273-278
    • /
    • 2008
  • In this paper, effects of thermoelastic stress by using lock-in thermography was measured in the cantilever beam. In experiment, a circular holed plate was applied to analyze variation of transient stress under the condition of repeated cyclic loading. And the finite element modal analysis as computational work was performed. According to the surface temperature obtained from infrared thermography, the stress of the nearby hole was predicted based on thermoelastic equation. As results, each stress distributions between 2nd and 3rd vibration mode were qualitatively and quantitatively investigated, respectively. Also, dynamic stress concentration factors according to the change of vibration amplitude were estimated for the resonance frequency.

Safety Monitoring of a Processing Plant for Preparing Raw Oysters Crassostrea gigas for Consumption (생식용 굴(Crassostrea gigas) 작업장의 위생안전성에 대한 모니터링)

  • Kang, Kyung Tae;Park, Sun Young;Choi, Jong-Duck;Kim, Min Joo;Heu, Min Soo;Kim, Jin-Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.50 no.2
    • /
    • pp.120-129
    • /
    • 2017
  • This study assessed the safety of raw oysters Crassostrea gigas for consumption during processing in a processing plant. Bacterial contamination (e.g., viable cell counts, coliform groups, Escherichia. coli and pathogenic bacteria) and chemical contamination (e.g., heavy metals and shellfish toxins) were measured on raw oysters, a processing equipment, employees and work areas. No total mercury, lead, paralytic shellfish poison, diarrheic shellfish poison or norovirus was detected in any post-harvested oyster samples. However, the cadmium level ranged from 0.1-0.2 mg/kg. The viable cell count, E. coli and coliform group levels in post-harvested oysters ranged from 4.00-4.54 log CFU/g, ND-210 MPN/100 g and 110-410 MPN/100 g, respectively. The viable contaminating cell counts on employees, equipment and work areas were in the range of $0.90-3.46log\;CFU/100cm^2$. Airborne bacteria in the work areas ranged from 0.60 to 1.81 log CFU/plate/15 min. Thus, no significant health risks were detected in the processing plant.

A Study on the Ultimate Strength Behavior according to Analysis Boundary at Stiffened Plate (선체보강판의 해석영역에 따른 최종강도거동에 관한 연구)

  • 박주신;고재용
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.10a
    • /
    • pp.262-269
    • /
    • 2004
  • Ship structures are basically an assembly of plate elements and the load-carrying capacity or the ultimate strength is one of the most important criteria for safety assessment and economic design. Also, Structural elements making up ship plated structures do not work separately, resulting in high degree of redundancy and complexity, in contrast to those of steel framed structures. To enable the behavior of such structures to be analyzed, simplifications or idealizations must essentially be made considering the accuracy needed and the degree of complexity of the analysis to be used. On this study, to investigate effect of analysis range, the finite element method are used and their results are compared varying the analysis ranges. The model has been selected from bottom panels of large merchant ship structures. For FEA, three types of structural modeling are adopted in terms of the extent of the analysis. The purpose of the present study is to numerically calculate the characteristics of ultimate strength behavior according to the analysis ranges of stiffened panels subject to uniaxial compressive loads.

  • PDF