• Title/Summary/Keyword: safety work plate

Search Result 51, Processing Time 0.023 seconds

Design and Test of ElectroMagnetic Acoustic Transducer applicable to Wall-Thinning Inspection of Containment Liner Plates (격납건물 라이너 플레이트 감육 검사를 위한 전자기 초음파 트랜스듀서의 설계 및 성능 평가)

  • Han, Soon Woo;Cho, Seung Hyun;Kang, To;Moon, Seong In
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.15 no.1
    • /
    • pp.46-52
    • /
    • 2019
  • This work proposes a noncontact ultrasonic transducer for detecting wall-thinning of containment liner plates of nuclear power plants by measuring their thickness without physical contact. Because the containment liner plate is designed to prevent atmospheric leakage of radioactive substances under severe nuclear accident, its wall-thinning inspection is important for safety of nuclear power plants. Wall-thinning investigation of containment liner plates have been carried out by measuring their thickness with contact-type ultrasonic thickness gauge by inspectors and needs a lot of time and cost. As an alternative, an electromagnetic acoustic transducer measuring precisely thickness of containment liner plates without any physical contact or couplant was suggested in this research. A transducer generating and measuring shear ultrasonic waves in thickness direction was designed and wave field produced by the transducer was analyzed to verify the design. The working performance of the suggested transducer was tested with carbon steel plate specimens with various thicknesses. The test result shows that the proposed transducer can measure thickness of the specimens precisely without any couplant and implies that swift scanning of wall-thinning of containment liner plates will be possible with the proposed transducer.

Estimation of Buckling and Plastic Behaviour according to the Analysis Model of the Stiffened Plate (보강판의 해석모델에 따른 좌굴 및 소성거동 평가)

  • Ko, Jae-Yong;Oh, Young-Cheol;Park, Joo-Shin
    • Journal of Navigation and Port Research
    • /
    • v.31 no.3 s.119
    • /
    • pp.271-279
    • /
    • 2007
  • Ship structures are basically an assembly of plate elements and estimation load-carrying capacity or the ultimate strength is one of the most important criterion for estimated safety assessment and rational design on the ship structure. Also, Structural elements making up ship plated structures do not work separately against external load. One of the critical collapse events of a ship structure is the occurrence of overall buckling and plastic collapse of deck or bottom structure subjected to longitudinal bending. So, the deck and the bottom plates are reinforced by a number af longitudinal stiffeners to increase their strength and load-carrying capacity. For a rational design avoiding such a sudden collapse, it is very important to know the buckling and plastic behaviour or collapse pattern of the stiffened plate under axial compression. In this present study, to investigate effect af modeling range, the finite element method are used and their results are compared varying the analysis ranges. When making the FEA model, six types of structural modeling are adopted varying the cross section of stiffener. In the present paper, a series of FEM elastoplastic large deflection analyses is performed on a stiffened plate with fiat-bar, angle-bar and tee-bar stiffeners. When the applied axial loading, the influences of cross-sectional geometries on collapse behaviour are discussed. The purpose of the present study is examined to numerically calculate the characteristics of buckling and ultimate strength behavior according to the analysis method of ship's stiffened plate subject to axial loading.

Changes of Microbial Load on the Hands of Food Preparers (손의 미생물 오염도의 경시적 변화 - 조리종사자를 중심으로)

  • Kim, Jong-Gyu;Park, Jeong-Yeong;Kim, Joong-Soon
    • Journal of Food Hygiene and Safety
    • /
    • v.26 no.2
    • /
    • pp.154-159
    • /
    • 2011
  • Inadequate food handling and poor hand hygiene playa major role in the occurrence of foodborne diseases. The objective of this study was to find out if the level of microbial contamination on the hands of food preparers varies by time during their working period. This study focused on the contamination of aerobic plate count, total and fecal coliforms, Escherichia coli, Staphylococcus aureus, and Salmonella spp. Sampling from left hand and right hand of twenty food preparers was done with glove-juice method at every two hours during their work. Microbiological testing was conducted according to the Food Code of Korea. The microbiological load on the hands was changed over time. Samples taken from their hands before work and at 8 hours showed higher levels of bacteria than those taken at 2, 4, and 6 hours during work and/or after work (p < 0.05). The contamination levels of microorganisms were consistently higher in right hand than in left hand. Poor hand hygiene practices were indicated by the positive results for total and fecal coli forms, E. coli, S. aureus, and Salmonella spp. on the hands of some food preparers. This study indicates food preparers' hands can be a vehicle of pathogen during their work. The results of this study emphasize the importance of hand hygiene education and training targeting the food preparers.

Comparison of Three Different Slip Meters under Various Contaminated Conditions

  • Kim, Jung-Soo
    • Safety and Health at Work
    • /
    • v.3 no.1
    • /
    • pp.22-30
    • /
    • 2012
  • Objectives: To challenge the problem of slipperiness, various slipmeters have been developed to assess slip hazard. The performance of in-situ slipmeter is, however, still unclear under the various floor conditions. The main objectives of this study were to evaluate the performance of three kinds of slipmeters under real conditions, and to find their dynamic and kinematic characteristics, which were compared with gait test results. Methods: Four common restaurant floor materials were tested under five contaminants. Slipmeters and human gaits were measured by high speed camera and force plate to find and compare their dynamic and kinematic characteristics. Results: The contact pressures and built-up ratio were below those of subjects. The sliding velocity of British Pendulum Tester was above those of subjects, while those of BOT-3000 and English XL were below those of subjects. From the three meters, the English XL showed the highest overall correlation coefficient (r = 0.964) between slip index and $R_a$, while the rest did not show statistical significance with surface roughness parameters ($R_a$, $R_z$). The English XL only showed statistical significance (p < 0.01) between slip index and contaminants. The static coefficient of friction obtained with the BOT-3000 showed good consistency and repeatability (CV < 0.1) as compared to the results for the BPT (CV > 0.2) and English XL (CV < 0.2). Conclusion: It is unclear whether surface roughness can be a reliable and objective indicator of the friction coefficient under real floor conditions, and the viscosity of contaminants can affect the friction coefficient of the same floors. Therefore, to evaluate slipperiness, the performance of the slipmeters needed to improve.

Influence of Load on Welding Stress Distribution of Structural Steel (구조용 강재의 용접응력 분포에 미치는 작용력의 영향)

  • Lee, Sang Hyong;Chang, Kyong Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.5 s.72
    • /
    • pp.555-564
    • /
    • 2004
  • Steel materials, which are normally used in bridge structures, are prone to corrosion and have thin plate structures. Steel bridges that have been damaged through increased vehicle load and corrosion are frequently expected to be strengthened. Repair or strengthening methods generally include cutting, bolting, and welding. The basic characteristics of stress and deformation behavior generated by cutting and welding in the course of the repair work, however, are not yet understood. It is difficult to say whether the safety of the structure after welding conforms with existing safety evaluation methods.Therefore, to gain confidence in the material and to guarantee the safety of the structure after welding, the stress generated by heat, through welding and cutting, was generalized. The effect of additional loads with respect to stress generated by heat was also investigated.

Cyclic behaviour and modelling of stainless-clad bimetallic steels with various clad ratios

  • Liu, Xinpei;Ban, Huiyong;Zhu, Juncheng;Uy, Brian
    • Steel and Composite Structures
    • /
    • v.34 no.2
    • /
    • pp.189-213
    • /
    • 2020
  • Stainless-clad (SC) bimetallic steels that are manufactured by metallurgically bonding stainless steels as cladding metal and conventional mild steels as substrate metal, are kind of advanced steel plate products. Such advanced composite steels are gaining increasingly widespread usage in a range of engineering structures and have great potential to be used extensively for large civil and building infrastructures. Unfortunately, research work on the SC bimetallic steels from material level to structural design level for the applications in structural engineering field is very limited. Therefore, the aim of this paper is to investigate the material behaviour of the SC bimetallic steels under the cyclic loading which structural steels usually could encounter in seismic scenario. A number of SC bimetallic steel coupon specimens are tested under monotonic and cyclic loadings. The experimental monotonic and cyclic stress-strain curves of the SC bimetallic steels are obtained and analysed. The effects of the clad ratio that is defined as the ratio of the thickness of cladding layer to the total thickness of SC bimetallic steel plate on the monotonic and cyclic behaviour of the SC bimetallic steels are studied. Based on the experimental observations, a cyclic constitutive model with combined hardening criterion is recommended for numerical simulation of the cyclic behaviour of the SC bimetallic steels. The parameters of the constitutive model for the SC bimetallic steels with various clad ratios are calibrated. The research outcome presented in this paper may provide essential reference for further seismic analysis of structures fabricated from the SC bimetallic steels.

Context-Aware Steel-Plate Piling Process System For Improving the Ship-Building Process (선박 건조공정 개선을 위한 상황인지 컴퓨팅 기반의 강재적치처리시스템)

  • Kang, Dong-Hoon;Ha, Chang-Wan;Kim, Je-Wook;Oh, Hoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.6
    • /
    • pp.165-178
    • /
    • 2011
  • A gigantic ship is constructed by assembling various types of ship blocks, each block being made by cutting and piecing the steel-plates together. The steel-plate piling process as the initial stage of ship construction sorts and manages the steel-plates according to the ship blocks that the steel-plates are used to make. The steel-plate piling process poses some problems such as process delay due to piling errors, safety vulnerability due to the handling of extra heavy-weight objects, and the uncertainty of work plan due to lack of information management in the pile spaces. We constructed a steel-plate piling process system based on the context-aware computing to resolve such problems. We built simulation system that can simulate the piling process and then established a smart space within the system by using tags, sensors and a real-time location system in order to collect context information. Workers receive an appropriate or intelligent service from the system.

A Study on Physicochemical Properties of Epoxy Coatings for Liner Plate in Nuclear Power Plant (원자력발전소 격납건물 철재면 에폭시 도장시편의 물리화학적 특성 평가)

  • Lee, Jae-Rock;Seo, Min-Kang;Lee, Sang-Kook;Lee, Chul-Woo;Park, Soo-Jin
    • Applied Chemistry for Engineering
    • /
    • v.16 no.6
    • /
    • pp.809-814
    • /
    • 2005
  • In this work, the thermal properties of epoxy coating system on the liner plate in the containment structure of nuclear power plants had been examined by irradiation and design basis accident (DBA) conditions. The effect of immersion in hot water on adhesion strength of the coating system had been also studied. The glass transition temperature ($T_g$) and thermal stability of ET-5290/carbon steel A 32 epoxy coating systems were measured by DSC and TGA analyses, respectively. Contact angle measurements were used to determine the effect of immersion on the surface energetics of epoxy coating system, with a viewpoint of surface free energy. Adhesion tests were also executed to evaluate the adhesion strength at interfaces between carbon steel plate and epoxy resins. As a result, it was found that the irradiation led to an improvement of internal crosslinked structure in cured epoxy systems, resulting in significantly increasing the thermal stability, as well as the $T_g$. Also, the immersion in hot water made a role in the post-curing of epoxy resins and increased the mechanical interlocking of the network system, resulting in increasing the adhesion strength of the epoxy coating system.

POSCA: A computer code for fission product plateout and circulating coolant activities within the primary circuit of a high temperature gas-cooled reactor

  • Tak, Nam-il;Lee, Jeong-Hun;Lee, Sung Nam;Jo, Chang Keun
    • Nuclear Engineering and Technology
    • /
    • v.52 no.9
    • /
    • pp.1974-1982
    • /
    • 2020
  • Numerical prediction of fission product plateout and circulating coolant activities under normal operating conditions is crucial in the design of a high temperature gas-cooled reactor (HTGR). The results are used for the maintenance and repair of the components as well as the safety analysis regarding early source terms under loss of coolant accident scenarios. In this work, a new computer code named POSCA (Plate-Out Surface and Circulating Activities) was developed based on a one-dimensional model to evaluate fission product plateout and circulating coolant activities within the primary circuit of a HTGR. The verification and validation of study for the POSCA code was done using available analytical results and two in-pile experiments (i.e., OGL-1 and VAMPYR-1). The results of the POSCA calculations show that POSCA is able to simulate plateout and circulating coolant activities in a HTGR with fast computation and reasonable accuracy.

Evaluation of Ice Adhesion Strength on the Oxidation of Transmission Line ACSR Cable (송전선로 ACSR 케이블의 산화에 따른 결빙 특성 평가)

  • Cho, Hui Jae;Kim, You Sub;Jung, Yong Chan;Lee, Soo Yeol
    • Korean Journal of Materials Research
    • /
    • v.29 no.6
    • /
    • pp.378-384
    • /
    • 2019
  • Ice accumulation on Aluminum Conductor Steel Reinforced(ACSR) cable during winter is an important matter in terms of safety, economy, and efficient power supply. In this work, the ice adhesion strengths of ACSR cable oxidized during different periods(7 years oxidized and 15 years oxidized) are evaluated. At first, a plate type dry oxidation standard specimen, whose surface characteristics are similar to those of ACSR cable, is prepared. Dry oxidation standard specimens are heat-treated at $500^{\circ}C$ for 20, 60, and 120 minutes in order to obtain different degrees of oxidation. After the dry oxidation, surface properties are analyzed using contact angle analyzer, atomic force microscopy, spectrophotometer, and gloss meter. The ice adhesion strengths are measured using an ice pull-off tester. Correlations between the surface properties and the ice adhesion strength are obtained through a regression analysis indicating a Boltzmann equation. It is revealed that the ice adhesion strength of 15-year oxidized ACSR cable is approximately 8 times higher than that of ACSR-bare.