• 제목/요약/키워드: safety work model

검색결과 673건 처리시간 0.022초

Model of Future Teacher's Professional Labor Training (Art & Craft Teacher)

  • Tytarenko, Valentyna;Tsyna, Andriy;Tytarenko, Valerii;Blyzniuk, Mykola;Kudria, Oksana
    • International Journal of Computer Science & Network Security
    • /
    • 제21권3호
    • /
    • pp.21-30
    • /
    • 2021
  • Economic transformations have led to an increase in the role of creative assets and their central role in public life. Changes in creative activity have led to a change in the organization of the work of institutes engaged in the training of specialists, in particular teachers of labor education. Methods and approaches to training determine the development of creative industries, being the basis for models of professional training of future teachers of labor training. The purpose of an article was to develop a modern model of professional training of future teachers of labor training based on the concept of creative economy. The methodology is based on the concepts of holistic craft and creative economy. Based on the integration of pedagogical learning models "Craft as design and problem-solving", "Craft as skill and knowledge building", "Craft as product-making" and "Craft as self-expression" developed and experimentally confirmed the conceptual model of professional training of future teachers of labor training. The proposed model forms a practitioner with professional, technical, digital and creative skills who is able to transfer the experience to students. The training course "Creativity and creative thinking" has been developed. The model provided for the development of a course based on the strategy of developing professional creativity, flexibility, improvisation, openness, student activity, joint practice, student-oriented approach. The practical value implies the adaptation of the developed model of professional training of future teachers of labor education during the training of teachers in higher education, which is confirmed in the experiment.

Sealing design optimization of nuclear pressure relief valves based on the polynomial chaos expansion surrogate model

  • Chaoyong Zong;Maolin Shi;Qingye Li;Tianhang Xue;Xueguan Song;Xiaofeng Li;Dianjing Chen
    • Nuclear Engineering and Technology
    • /
    • 제55권4호
    • /
    • pp.1382-1399
    • /
    • 2023
  • Pressure relief valve (PRV) is one of the important control valves used in nuclear power plants, and its sealing performance is crucial to ensure the safety and function of the entire pressure system. For the sealing performance improving purpose, an explicit function that accounts for all design parameters and can accurately describe the relationship between the multi-design parameters and the seal performance is essential, which is also the challenge of the valve seal design and/or optimization work. On this basis, a surrogate model-based design optimization is carried out in this paper. To obtain the basic data required by the surrogate model, both the Finite Element Model (FEM) and the Computational Fluid Dynamics (CFD) based numerical models were successively established, and thereby both the contact stresses of valve static sealing and dynamic impact (between valve disk and nozzle) could be predicted. With these basic data, the polynomial chaos expansion (PCE) surrogate model which can not only be used for inputs-outputs relationship construction, but also produce the sensitivity of different design parameters were developed. Based on the PCE surrogate model, a new design scheme was obtained after optimization, in which the valve sealing stress is increased by 24.42% while keeping the maximum impact stress lower than 90% of the material allowable stress. The result confirms the ability and feasibility of the method proposed in this paper, and should also be suitable for performance design optimizations of control valves with similar structures.

The Kinetics of Anodic Dissolution and Repassivation on 316L Stainless Steel in Borate Buffer Solution Studied by Abrading Electrode Technique

  • Xu, H.S.;Sun, D.B.;Yu, H.Y.;Meng, H.M.
    • Corrosion Science and Technology
    • /
    • 제14권6호
    • /
    • pp.261-266
    • /
    • 2015
  • The capacity of passive metal to repassivate after film damage determines the development of local corrosion and the resistance to corrosion failures. In this work, the repassivation kinetics of 316L stainless steel (316L SS) was investigated in borate buffer solution (pH 9.1) using a novel abrading electrode technique. The repassivation kinetics was analyzed in terms of the current density flowing from freshly bare 316L SS surface as measured by a potentiostatic method. During the early phase of decay (t < 2 s), according to the Avrami kinetics-based film growth model, the transient current was separated into anodic dissolution ($i_{diss}$) and film formation ($i_{film}$) components and analyzed individually. The film reformation rate and thickness were compared according to applied potential. Anodic dissolution initially dominated the repassivation for a short time, and the amount of dissolution increased with increasing applied potential in the passive region. Film growth at higher potentials occurred more rapidly compared to at lower potentials. Increasing the applied potential from 0 $V_{SCE}$ to 0.8 $V_{SCE}$ resulted in a thicker passive film (0.12 to 0.52 nm). If the oxide monolayer covered the entire bare surface (${\theta}=1$), the electric field strength through the thin passive film reached $1.6{\times}10^7V/cm$.

Initiating Events Study of the First Extraction Cycle Process in a Model Reprocessing Plant

  • Wang, Renze;Zhang, Jiangang;Zhuang, Dajie;Feng, Zongyang
    • Journal of Radiation Protection and Research
    • /
    • 제41권2호
    • /
    • pp.117-121
    • /
    • 2016
  • Background: Definition and grouping of initiating events (IEs) are important basics for probabilistic safety assessment (PSA). An IE in a spent fuel reprocessing plant (SFRP) is an event that probably leads to the release of dangerous material to jeopardize workers, public and environment. The main difference between SFRPs and nuclear power plants (NPPs) is that hazard materials spread diffusely in a SFRP and radioactive material is just one kind of hazard material. Materials and Methods: Since the research on IEs for NPPs is in-depth around the world, there are several general methods to identify IEs: reference of lists in existence, review of experience feedback, qualitative analysis method, and deductive analysis method. While failure mode and effect analysis (FMEA) is an important qualitative analysis method, master logic diagram (MLD) method is the deductive analysis method. IE identification in SFRPs should be consulted with the experience of NPPs, however the differences between SFRPs and NPPs should be considered seriously. Results and Discussion: The plutonium uranium reduction extraction (Purex) process is adopted by the technics in a model reprocessing plant. The first extraction cycle (FEC) is the pivotal process in the Purex process. Whether the FEC can function safely and steadily would directly influence the production process of the whole plant-production quality. Important facilities of the FEC are installed in the equipment cells (ECs). In this work, IEs in the FEC process were identified and categorized by FMEA and MLD two methods, based on the fact that ECs are containments in the plant. Conclusion: The results show that only two ECs in the FEC do not need to be concerned particularly with safety problems, and criticality, fire and red oil explosion are IEs which should be emphatically analyzed. The results are accordant with the references.

선체보강판의 모델링범위에 따른 최종강도거동에 관한 연구 (A Study on the Ultimate Strength Behavior according to Modeling Range at the Stiffened Plate)

  • 박주신;고재용
    • 해양환경안전학회:학술대회논문집
    • /
    • 해양환경안전학회 2004년도 추계학술발표회
    • /
    • pp.137-141
    • /
    • 2004
  • 선체구조는 기본적으로 판부재의 조합으로 이루어져 있으며, 이러한 판부재는 하중분담 능력에 따라서 전체적인 구조의 강도에 른 영향을 미치게 된다. 또한 각 구조적인 판부재는 개별적으로 거동하는 것이 아니라 전체적인 구조와 연속적으로 작용하게 된다. 선박구조물은 강구조물과 해양구조물에서와는 달리 고정도의 부정정 구조물로 구성되어 있으며 이러한 구조물의 거동을 정확하게 규명하기 위해서는 복잡하게 구성되어 있는 선체판넬 구조를 단순화시켜서 해석에 적용하여야 한다. 본 연구에서는 선체판넬구조의 모델링영역에 따른 최종강도 거동의 차이를 분석하여, 가장 합리적인 모델링영역을 도출하고자 한다. 사용된 해석모델은 실제 상선의 이중저구조에서 사용되는 판넬에서 채택하였으며, 유한요소해석 모델링 시 3가지 서로 다른 해석영역을 제시하여 적요하였다. 본 연구의 목적은 일축압축하중이 작용하는 보강판넬구조에서 서로 다른 모델링영역을 갖는 보강판에서의 최종강도 거동을 분석하여 최적의 해석모델링 영역을 찾는 것이다.

  • PDF

The expanded LE Morgenstern-Price method for slope stability analysis based on a force-displacement coupled mode

  • Deng, Dong-ping;Lu, Kuan;Wen, Sha-sha;Li, Liang
    • Geomechanics and Engineering
    • /
    • 제23권4호
    • /
    • pp.313-325
    • /
    • 2020
  • Slope displacement and factor of safety (FOS) of a slope are two aspects that reflect the stability of a slope. However, the traditional limit equilibrium (LE) methods only give the result of the slope FOS and cannot be used to solve for the slope displacement. Therefore, developing a LE method to obtain the results of the slope FOS and slope displacement has significance for engineering applications. Based on a force-displacement coupled mode, this work expands the LE Morgenstern-Price (M-P) method. Except for the mechanical equilibrium conditions of a sliding body adopted in the traditional M-P method, the present method introduces a nonlinear model of the shear stress and shear displacement. Moreover, the energy equation satisfied by a sliding body under a small slope displacement is also applied. Therefore, the double solutions of the slope FOS and horizontal slope displacement are established. Furthermore, the flow chart for the expanded LE M-P method is given. By comparisons and analyses of slope examples, the present method has close results with previous research and numerical simulation methods, thus verifying the feasibility of the present method. Thereafter, from the parametric analysis, the following conclusions are obtained: (1) the shear displacement parameters of the soil affect the horizontal slope displacement but have little effect on the slope FOS; and (2) the curves of the horizontal slope displacement vs. the minimum slope FOS could be fitted by a hyperbolic model, which would be beneficial to obtain the horizontal slope displacement for the slope in the critical state.

고속국도용 SB3등급 전이구간 방호울타리 개발 및 성능평가 (Development and performance evaluation of SB3-level roadside barrier for highway transition zone)

  • 이정휘;조종석;이재혁
    • 한국도로학회논문집
    • /
    • 제19권6호
    • /
    • pp.13-21
    • /
    • 2017
  • PURPOSES : In this research, an SB3-level roadside barrier for a highway transition zone that meets the newly established guide Installation and Management Guide for Roadside Safety Appurtenance is developed. Its performance is evaluated by a numerical simulation and real-scale vehicle impact test. METHODS : The commercial explicit dynamic software LS-DYNA is utilized for impact simulation. An FE model of a passenger vehicle developed and released by the National Crash Analysis Center (NCAC) at George Washington University and a heavy goods vehicle (HGV) model developed by the TC226/CM-E Work Group are utilized for impact simulation. The original vehicle models were modified to reflect the conditions of test vehicles. The impact positions of the passenger vehicle and truck to the transition guardrail were set as 1/2 and 3/4 of the transition region, respectively, according to the guide. RESULTS : Based on the numerical simulation results of the existing transition barrier, a new structural system with improved performance was suggested. According to the result of a numerical simulation of the suggested structural system, two sets of transition barriers were manufactured and installed for real-scale vehicle impact tests. The tests were performed at a test field for roadside safety hardware of the Korea Highway Corporation Research Institute. CONCLUSIONS : The results of both the real-vehicle impact tests and numerical simulations of the developed transition barrier satisfied the performance criteria, and the results of numerical simulation showed good correlation with the test results.

YOLOv5 및 OpenPose를 이용한 건설현장 근로자 탐지성능 향상에 대한 연구 (A Study on the Improvement of Construction Site Worker Detection Performance Using YOLOv5 and OpenPose)

  • 윤영근;오태근
    • 문화기술의 융합
    • /
    • 제8권5호
    • /
    • pp.735-740
    • /
    • 2022
  • 건설업은 사망자 수가 가장 많이 발생하는 산업이며, 다양한 제도 개선에도 사망자는 크게 줄어들지 않고 있다. 이에 따라, CCTV 영상에 인공지능(AI)을 적용한 실시간 안전관리가 부각되고 있다. 건설현장의 영상에 대한 AI를 적용한 근로자 탐지연구가 진행되고 있지만, 건설업의 특성상 복잡한 배경 등의 문제로 인해 성능 발현에 제한이 있다. 본 연구에서는 근로자의 탐지 및 자세 추정에 대한 성능 향상을 위해 YOLO 모델과 OpenPose 모델을 융합하여, 복잡 다양한 조건에서의 근로자에 대한 탐지 성능을 향상시켰다. 이는 향후 근로자의 불안전안 행동 및 건강관리 측면에서 활용도가 높을 것으로 예상된다.

Fatigue behavior of hybrid GFRP-concrete bridge decks under sagging moment

  • Xin, Haohui;Liu, Yuqing;He, Jun;Fan, Haifeng;Zhang, Youyou
    • Steel and Composite Structures
    • /
    • 제18권4호
    • /
    • pp.925-946
    • /
    • 2015
  • This paper presents a new cost-effective hybrid GFRP-Concrete deck system that the GFRP panel serves as both tensile reinforcement and stay-in-place form. In order to understand the fatigue behavior of such hybrid deck, fatigue test on a full-scale specimen under sagging moment was conducted, and a series of static tests were also carried out after certain repeated loading cycles. The fatigue test results indicated that such hybrid deck has a good fatigue performance even after 3.1 million repeated loading cycles. A three-dimensional finite element model of the hybrid deck was established based on experimental work. The results from finite element analyses are in good agreement with those from the tests. In addition, flexural fatigue analysis considering the reduction in flexural stiffness and modulus under cyclic loading was carried out. The predicted flexural strength agreed well with the analytical strength from finite element simulation, and the calculated fatigue failure cycle was consistent with the result based on related S-N curve and finite element analyses. However, the flexural fatigue analytical results tended to be conservative compared to the tested results in safety side. The presented overall investigation may provide reference for the design and construction of such hybrid deck system.

3차원 브레이크 디스크 모델의 온도 분포와 열응력 시뮬레이션에 관한 연구 (Temperature Field and Thermal Stress Simulation of Solid Brake Disc Based on Three-dimensional Model)

  • 황평;서희창;우쉔
    • Tribology and Lubricants
    • /
    • 제26권1호
    • /
    • pp.31-36
    • /
    • 2010
  • The brake system is an important part of the automobile safety system. The disc brake system is divided into two parts: a rotating axi-symmetrical disc, and the stationary pads. The frictional heat, which is generated on the interface of the disc and pads, can cause high temperatures during the braking process. The frictional heat source (the pads) is moving on the disc and the location is time-dependent. Our study applies a moving heat source, which is defined by the time and space variable on the frictional surface, in order to simulate the frictional heat behavior accurately during the braking process. The object of the present work is the determination of the temperature distribution and thermal stress in the solid disc by non-axisymmetric 3D modeling for repeated braking.