• Title/Summary/Keyword: safety work model

Search Result 671, Processing Time 0.025 seconds

Structural evaluation of an existing steel natatorium by FEM and dynamic measurement

  • Liu, Wei;Gao, Wei-Cheng;Sun, Yi;Yu, Yan-Lei
    • Structural Engineering and Mechanics
    • /
    • v.31 no.5
    • /
    • pp.507-526
    • /
    • 2009
  • Based on numerical and experimental methods, a systematic structural evaluation of a steel natatorium in service was carried out in detail in this paper. Planning of inspection tasks was proposed firstly according to some national codes in China in order to obtain the economic and reliable results. The field visual inspections and static computation were conducted in turn under in-service environmental conditions. Further a three-dimensional finite element model was developed according to its factual geometry properties obtained from the field inspection. An analytical modal analysis was performed to provide the analytical modal properties. The field vibration tests on the natatorium were conducted and then two different system identification methods were used to obtain the dynamic characteristics of the natatorium. A good correlation was achieved in results obtained from the two system identification methods and the finite element method (FEM). The numerical and experimental results demonstrated that the main structure of the natatorium in its present status is safe and it still satisfies the demand of the national codes in China. But the roof system such as purlines and skeletons must be removed and rebuilt completely. Moreover the system identification results showed that field vibration test is sufficient to identify the reliable dynamic properties of the natatorium. The constructive suggestion on structural evaluation of the natatorium is that periodic assessment work must be maintained to ensure the natatorium's safety in the future.

A dynamic human reliability assessment approach for manned submersibles using PMV-CREAM

  • Zhang, Shuai;He, Weiping;Chen, Dengkai;Chu, Jianjie;Fan, Hao
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.2
    • /
    • pp.782-795
    • /
    • 2019
  • Safety is always acritical focus of exploration of ocean resources, and it is well recognized that human factor is one of the major causes of accidents and breakdowns. Our research developed a dynamic human reliability assessment approach, Predicted Mean Vote-Cognitive Reliability and Error Analysis Method (PMV-CREAM), that is applicable to monitoring the cognitive reliability of oceanauts during deep-sea missions. Taking into account the difficult and variable operating environment of manned submersibles, this paper analyzed the cognitive actions of oceanauts during the various procedures required by deep-sea missions, and calculated the PMV index using human factors and dynamic environmental data. The Cognitive Failure Probabilities (CFP) were calculated using the extended CREAM approach. Finally, the CFP were corrected using the PMV index. This PMV-CREAM hybrid model can be utilized to avoid human error in deep-sea research, thereby preventing injury and loss of life during undersea work. This paper verified the method with "Jiaolong" manned submersible 7,000 m dive test. The"Jiaolong" oceanauts CR(Corrected CFP) is dynamic from 3.0615E-3 to 4.2948E-3, the CR caused by the environment is 1.2333E-3. The result shown the PMV-CREAM method could describe the dynamic human reliability of manned submersible caused by thermal environment.

A COMPARISON STUDY OF SPACE RADIATION DOSE ANALYSIS PROGRAMS: SPENVIS SECTORING TOOL AND SIGMA II

  • Chae Jongwon
    • Bulletin of the Korean Space Science Society
    • /
    • 2004.10b
    • /
    • pp.347-350
    • /
    • 2004
  • A space radiation analysis has been used to evaluate an ability of electronic equipment boxes or spacecrafts to endure various radiation effects, so it helps design thicknesses of structure and allocate components to meet the radiation requirements. A comparison study of space radiation dose analysis programs SPENVIS Sectoring Tool (SST) and SIGMA II is conducted through some structure cases, simple sphere shell, box and representative satellite configurations. The results and a discussion of comparison will be given. A general comparison will be shown for understanding those programs. The both programs use the same strategy, solid angle sectoring with ray-tracing method to produce an approximate dose at points in representative simple and complex models of spacecraft structures. Also the particle environment data corresponding to mission specification and radiation transport data are used as input data. But there are distinctions between them. The specification of geometry model and its input scheme, the assignment of dose point and the numbers, the prerequisite programs and ways of representing results will be discussed. SST is a web-based interactive program for sectoring analysis of complex geometries. It may be useful for a preliminary dose assessment with user-friendly interfaces and a package approach. SIGMA II is able to obtain from RSICC (Radiation Safety Information Computational Center) as a FOR-TRAN 77 source code. It may be suitable for either parametric preliminary design or detailed final design, e.g. a manned flight or radiation-sensitive component configuration design. It needs some debugs, recompiling and a tedious work to make geometrical quadric surfaces for actual spacecraft configuration, and has poor documentation. It is recommend to vist RSICC homepage and GEANT4/SSAT homepage.

  • PDF

Proposal for Social Casino Game Policy based on Responsible Game System (책임게임시스템 기반 소셜 카지노 게임 정책 제언)

  • Song, Seung-keun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.11
    • /
    • pp.2039-2044
    • /
    • 2016
  • This study aims to investigate the safety instrument to prepare the policy alternative for social web-board game which will be developed to base on social network in the future although social casino game is not available in Korea now. We reviewed several literature about responsible game system applied to especially U.S. New Jersey, responsible gambling system acted in the being advanced all countries. Game experts built up user protection model as previous work to prepare the law and policy which such a responsible game system will apply for current web-board gaem and future social casino game. As a result, this research revealed that standard of judgement which can identify four kind of addiction danger user group are raised. We expect to help this user protection alternative to provide the law and policy instrument for future social casino game and complement the problem of current web-board enforcement.

DEVELOPMENT OF A WALL-TO-FLUID HEAT TRANSFER PACKAGE FOR THE SPACE CODE

  • Choi, Ki-Yong;Yun, Byong-Jo;Park, Hyun-Sik;Kim, Hee-Dong;Kim, Yeon-Sik;Lee, Kwon-Yeong;Kim, Kyung-Doo
    • Nuclear Engineering and Technology
    • /
    • v.41 no.9
    • /
    • pp.1143-1156
    • /
    • 2009
  • The SPACE code that is based on a multi-dimensional two-fluid, three-field model is under development for licensing purposes of pressurized water reactors in Korea. Among the participating research and industrial organizations, KAERI is in charge of developing the physical models and correlation packages for the constitutive equations. This paper introduces a developed wall-to-fluid heat transfer package for the SPACE code. The wall-to-fluid heat transfer package consists of twelve heat transfer subregions. For each sub-region, the models in the existing safety analysis codes and the leading models in literature have been peer reviewed in order to determine the best models which can easily be applicable to the SPACE code. Hence a wall-to-fluid heat transfer region selection map has been developed according to the non-condensable gas quality, void fraction, degree of subcooling, and wall temperature. Furthermore, a partitioning methodology which can take into account the split heat flux to the continuous liquid, entrained droplet, and vapor fields is proposed to comply fully with the three-field formulation of the SPACE code. The developed wall-to-fluid heat transfer package has been pre-tested by varying the independent parameters within the application range of the selected correlations. The smoothness between two adjacent heat transfer regimes has also been investigated. More detailed verification work on the developed wall-to-fluid heat transfer package will be carried out when the coupling of a hydraulic solver with the constitutive equations is brought to completion.

The Effect of Manual Physical Therapy on Improvement in the Range of Motion of Frozen Shoulder Patients: A Meta-Analysis of Cases in South Korea

  • Kim, Chan Myeong;Lee, Jong Kyung;Hwang, Jong Ha;Lee, Jae Kwang
    • The Journal of Korean Physical Therapy
    • /
    • v.33 no.5
    • /
    • pp.211-216
    • /
    • 2021
  • Purpose: The main purpose of this meta-analysis was to identify the degree of effect size and variables for the impact of manual physical therapy on the improvement in the range of motion of frozen shoulder patients. Methods: This study collected 8 studies published between 1st January 2010 and 31st December 2020. The analysis of the results verified 49 effect size data and the random effect model was chosen. Results: First, the full case showed the largest mean effect size of 2.485 (p<0.001). Second, the size of the effect based on manual therapy and modality therapy showed an effect size of 4.178 (p<0.001). Third, the outcome group included 6 variables. The external rotation (2.818) variable group showed the largest mean effect size, followed by internal rotation (2.748), flexion (2.643), abduction (2.356), and adduction (2.356). Six outcomes were significant and the mean effect sizes of all the varied groups were above large size. The number of participants showed a 20 or less effect size of 2.478 (p>0.737). The number of intervention periods showed 4 weeks 20 or more effect size of 2.782 (p>0.294). Finally, the 'Trim and Fill' result confirmed that the calibration effect size was 1.471 (p<0.001). Conclusion: This study verified that manual physical therapy had a substantial effect on the improvement of the range of motion of patients with frozen shoulders and that the effects were dependent on the methods of outcomes.

Comparative analysis of internal flow characteristics of LBE-cooled fast reactor main coolant pump with different structures under reverse rotation accident conditions

  • Lu, Yonggang;Wang, Xiuli;Fu, Qiang;Zhao, Yuanyuan;Zhu, Rongsheng
    • Nuclear Engineering and Technology
    • /
    • v.53 no.7
    • /
    • pp.2207-2220
    • /
    • 2021
  • Lead alloy is used as coolant in Lead-based cooled Fast Reactor (LFR). The natural characteristics of lead alloy are combined with the simple structural design of LFR. This constitutes the inherent safety characteristics of LFR. The main work of this paper is to take the main coolant pump (MCP) in the lead-cooled fast reactor (LFR) as the research object, and to study the flow pattern distribution of the internal flow field under the reverse rotation pump condition, the reverse rotation positive-flow braking condition and the reverse rotation negative-flow braking condition. In this paper, the double-outlet volute type and the space guide vane are selected as the potential designs of the CLEAR-I MCP. In this paper, the CFD method is used to study the potential reverse accident of the MCP. It is found that the highest flow velocity in the impeller appears at the impeller outlet, and the Q-H curves of the two design programs basically coincide. The space guide vane type MCP has better hydraulic performance under the reverse rotation positive-flow condition, the Q-H curves of the two designs gradually separate with increasing flow rate, and the maximum flow velocity inside the space guide vane type MCP is obviously lower than that of the double-outlet volute type. For the reverse rotation test of MCP, only the condition of the forward rotating pump of the main coolant pump is tested and verified. For the simulation of the MCP in LBE medium, it proved that the turbulence model and basic settings selected in the simulation are reliable.

The Improvement of Disaster Safety Network using ICT Devices (ICT 기기를 활용한 재난안전통신망 강화 방안)

  • Hong, Sung-Hwa
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.2
    • /
    • pp.194-199
    • /
    • 2019
  • Natural disasters destroy decades of human effort and investments, thereby placing new demands on society for reconstruction and rehabilitation. In most case, the natural phenomena triggering the disasters are beyond human control. In order to solve the problems that the information resources can not be shared among disaster management sectors and their work is hard to be coordinated in city, an idea of application of ubiquitous sense network and ICT technology to model the architecture of the disaster prevention system based on the analysis of characteristics of disasters. The proposed algorithm simulated that it is possible to locate the terminal by linking the direction angle and the estimated position that can be confirmed at the time of stopping, even if the movement direction of the terminal does not move in a certain direction with only a smaller number of mobile base stations. We also confirmed that the proposed algorithms analyzed through simulation are more efficient than existing algorithms.

Drug-Drug Interaction Prediction Using Krill Herd Algorithm Based on Deep Learning Method

  • Al-Marghilani, Abdulsamad
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.6
    • /
    • pp.319-328
    • /
    • 2021
  • Parallel administration of numerous drugs increases Drug-Drug Interaction (DDI) because one drug might affect the activity of other drugs. DDI causes negative or positive impacts on therapeutic output. So there is a need to discover DDI to enhance the safety of consuming drugs. Though there are several DDI system exist to predict an interaction but nowadays it becomes impossible to maintain with a large number of biomedical texts which is getting increased rapidly. Mostly the existing DDI system address classification issues, and especially rely on handcrafted features, and some features which are based on particular domain tools. The objective of this paper to predict DDI in a way to avoid adverse effects caused by the consumed drugs, to predict similarities among the drug, Drug pair similarity calculation is performed. The best optimal weight is obtained with the support of KHA. LSTM function with weight obtained from KHA and makes bets prediction of DDI. Our methodology depends on (LSTM-KHA) for the detection of DDI. Similarities among the drugs are measured with the help of drug pair similarity calculation. KHA is used to find the best optimal weight which is used by LSTM to predict DDI. The experimental result was conducted on three kinds of dataset DS1 (CYP), DS2 (NCYP), and DS3 taken from the DrugBank database. To evaluate the performance of proposed work in terms of performance metrics like accuracy, recall, precision, F-measures, AUPR, AUC, and AUROC. Experimental results express that the proposed method outperforms other existing methods for predicting DDI. LSTMKHA produces reasonable performance metrics when compared to the existing DDI prediction model.

Dislocation in Semi-infinite Half Plane Subject to Adhesive Complete Contact with Square Wedge: Part I - Derivation of Corrective Functions (직각 쐐기와 응착접촉 하는 반무한 평판 내 전위: 제1부 - 보정 함수 유도)

  • Kim, Hyung-Kyu
    • Tribology and Lubricants
    • /
    • v.38 no.3
    • /
    • pp.73-83
    • /
    • 2022
  • This paper is concerned with an analysis of a surface edge crack emanated from a sharp contact edge. For a geometrical model, a square wedge is in contact with a half plane whose materials are identical, and a surface perpendicular crack initiated from the contact edge exists in the half plane. To analyze this crack problem, it is necessary to evaluate the stress field on the crack line which are induced by the contact tractions and pseudo-dislocations that simulate the crack, using the Bueckner principle. In this Part I, the stress filed in the half plane due to the contact is re-summarized using an asymptotic analysis method, which has been published before by the author. Further focus is given to the stress field in the half plane due to a pseudo-edge dislocation, which will provide a stress solution due to a crack (i.e. a continuous distribution of edge dislocations) later, using the Burgers vector. Essential result of the present work is the corrective functions which modify the stress field of an infinite domain to apply for the present one which has free surfaces, and thus the infiniteness is no longer preserved. Numerical methods and coordinate normalization are used, which was developed for an edge crack problem, using the Gauss-Jacobi integration formula. The convergence of the corrective functions are investigated here. Features of the corrective functions and their application to a crack problem will be given in Part II.