• Title/Summary/Keyword: safety work model

Search Result 671, Processing Time 0.023 seconds

Accident Prevention and Safety Management System for a Children School Bus (어린이 통학버스 사고 방지 및 안전 관리 시스템)

  • Kim, Hyeonju;Lee, Seungmin;Ham, Sojeong;Kim, Sunhee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.7
    • /
    • pp.446-452
    • /
    • 2020
  • As the use of children's school buses increases, accidents caused by the negligence of school bus drivers and ride carers have also increased significantly. To prevent such accidents, the government is coming up with various policies. We propose an accident prevention and safety management system for children's school buses. Through this system, bus drivers can easily check whether each child is seated and whether the seat belt is used, so it is possible to quickly respond to children's conditions while driving. With the ability to recognize faces by analyzing camera images, children can use a seat belt that is automatically adjusted to their height. It is therefore possible to prevent secondary injuries that may occur in the event of a traffic accident. In addition, a sleeping child-check system is provided to confirm that all children get off the bus, and a text service is provided to inform parents of their children's locations in real time. Based on Raspberry Pi, the system is implemented with cameras, pressure sensors, motors, Bluetooth modules, and so on. This proposed system was attached to a bus model to confirm that the series of functions work correctly.

A Study on the Effects of Casino's Risk Management Factors on Work Performance of Security Management Organization (카지노기업의 위기관리요인이 안전관리조직 업무성과에 미치는 영향)

  • Lee, Seung-Hoon;Kang, Min-Wan
    • Korean Security Journal
    • /
    • no.38
    • /
    • pp.109-136
    • /
    • 2014
  • Korea domestic casino industry has been experienced an explosive growth marking the highest quantity and quality with rapid growth of domestic economy since the 1960s. However there are really lack of study about presenting guideline for establishing risk management planning reflected characteristics of casino industry. Therefore, we analyzed previous studies about concept of the risk and criteria and drew dimension of safety supervision reflecting characteristics of casino industry. we, also, identified detailed safety management factors as well as classified three dimensions of environment, human and facility on the dimension of safety supervision. This study was designed to examine effect relationship between risk management factors and performance of security management organization focused on The mediation effect of atmosphere of organization We used two different tools for data analysis: SPSS 18.0 for the descriptive statistics and PLS 3.0 to validate the integrity of the research model and proposed hypotheses that is main effects from risk management factors to security management organization and mediation effects of atmosphere of organization. The data analysis confirmed the importance of risk management factors to enhanced performance of security management organization. The mediation effect of atmosphere of organization, also, supported relationship between risk management factors and performance of security management organization. It provided theoretical and practical implication for building risk management strategy well suited casino company and conducting security management.

  • PDF

Calculation of Low-Energy Reactor Neutrino Spectra for Reactor Neutrino Experiments

  • Riyana, Eka Sapta;Suda, Shoya;Ishibashi, Kenji;Matsuura, Hideaki;Katakura, Jun-ichi
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.2
    • /
    • pp.155-159
    • /
    • 2016
  • Background: Nuclear reactors produce a great number of antielectron neutrinos mainly from beta-decay chains of fission products. Such neutrinos have energies mostly in MeV range. We are interested in neutrinos in a region of keV, since they may take part in special weak interactions. We calculate reactor antineutrino spectra especially in the low energy region. In this work we present neutrino spectrum from a typical pressurized water reactor (PWR) reactor core. Materials and Methods: To calculate neutrino spectra, we need information about all generated nuclides that emit neutrinos. They are mainly fission fragments, reaction products and trans-uranium nuclides that undergo negative beta decay. Information in relation to trans-uranium nuclide compositions and its evolution in time (burn-up process) were provided by a reactor code MVP-BURN. We used typical PWR parameter input for MVP-BURN code and assumed the reactor to be operated continuously for 1 year (12 months) in a steady thermal power (3.4 GWth). The PWR has three fuel compositions of 2.0, 3.5 and 4.1 wt% $^{235}U$ contents. For preliminary calculation we adopted a standard burn-up chain model provided by MVP-BURN. The chain model treated 21 heavy nuclides and 50 fission products. The MVB-BURN code utilized JENDL 3.3 as nuclear data library. Results and Discussion: We confirm that the antielectron neutrino flux in the low energy region increases with burn-up of nuclear fuel. The antielectron-neutrino spectrum in low energy region is influenced by beta emitter nuclides with low Q value in beta decay (e.g. $^{241}Pu$) which is influenced by burp-up level: Low energy antielectron-neutrino spectra or emission rates increase when beta emitters with low Q value in beta decay accumulate Conclusion: Our result shows the flux of low energy reactor neutrinos increases with burn-up of nuclear fuel.

The Suggestion for Clinical Trial of Face Rejuvenation using Korean Medicine's Embedded Needle (Maesun) Based on Literature Review (매선을 활용한 한의 안면 성형 임상 연구 설계 제안 -한의 안면 성형 임상연구 동향 분석을 바탕으로-)

  • Lee, Jae-Chul;Lim, Chang-Gyu;Kim, Jung-Won;Park, Sun-Hee;Yoon, Jeong-Ho
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.26 no.2
    • /
    • pp.78-87
    • /
    • 2013
  • Objectives : This work aimed to review clinical trial trend of Korean medicine's face rejuvenation and suggest future trial using embedded needle(Maesun) based on Evidence-based medicine's PICO Model. Methods : 46 papers were searched from Oasis and DBPia, then 8 papers were engaged in review of clinical trial trend. Based on PICO model, clinical trial's patient, intervention, and outcome measurement were suggested. Results : Evidence level of clinical trials is relatively low, because their study designs are almost case report or case series. No study have comparison groups. Outcome measurement is varied, however, 3D face scanner were used to measure before-after changes of face. Based on review, we suggested that necessity of intervention standardization, measuring of normal control group and 2D/3D combined outcome measurement of face. Conclusions : There are many demands for revealing efficacy and safety of Korean medicine's intervention, also for face rejuvenation using embedded needle. For meeting the level of demands, more rigorous works are needed.

A Post-Quantum Multi-Signature Scheme (양자 컴퓨팅 환경에서 안전한 다중 서명 기법)

  • Ko, Chanyoung;Lee, Youngkyung;Lee, Kwangsu;Park, Jong Hwan
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.31 no.3
    • /
    • pp.517-526
    • /
    • 2021
  • Recently, the acceleration of the development of quantum computers has raised the issue of the safety of factorization and discrete logarithm based digital signature schemes used in existing Internet environments. To solve the issue, several digital signature schemes are presented that are safe in post-quantum computing environments, including standardization work by the National Institute of Standards and Technology(NIST). In this paper, we design and present a multi-signature scheme based on the TACHYON announced by Behnia et al. in 2018 CCS conference, and prove the security. Multi-signature schemes are key techniques that can distribute the dependence of cryptocurrency-wallet on private keys in the cryptocurrency field, which has recently received much attention as an digital signature application, and many researchers and developers have recently been interested. The multi-signature scheme presented in this paper enables public key aggregation in a plain public key model, which does not require additional zero-knowledge proof, and can construct an effective scheme with only an aggregated public key.

A Study of the Decision Making System in adopting Off-Site Construction Method in the Initial Stage Considering the Building Project Characteristics -Focused on Structure Work of Apartment Housing- (건축 프로젝트 특성을 고려한 초기 단계에서의 Off-Site Construction 공법 도입 여부 의사 결정 시스템 개발 - 공동주택 골조공사 중심으로 -)

  • Lee, Sungho;Cha, Heesung;Son, Bosik
    • Korean Journal of Construction Engineering and Management
    • /
    • v.23 no.1
    • /
    • pp.89-97
    • /
    • 2022
  • Recently, various problems such as reduced productivity, insufficient inflow of skilled manpower, reduced quality, and concerns about increasing safety accidents have appeared in the domestic construction industry. Stakeholder of construction project are considering the Off-Site Construction (OSC) method rather than the conventional on-site construction as an alternative. Despite the importance of decision making in the early stage of the adoption of OSC, there is a lack of methodologies for rational decision making. In this study, a decision making system has been developed to derive the final construction cost score by deriving the project characteristics, selecting the construction difficulty index, and developing a cost model for each construction method alternatives to calculate the standard construction cost. Using this system, the OSC method can be effectively evaluated in terms of its feasibility in the early stage of construction

Ideal body modeling of porous rock by frost-thawing (다공질암의 동결융해 현상에 대한 이상물체 모델의 적용성 연구)

  • Han, Heui-Soo;Back, Yoog
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.12 no.5
    • /
    • pp.399-405
    • /
    • 2010
  • The accumulated displacements and fatigues of rock are increased by the stress-hysteresis, induced from repeated frost-thawing. Also the shear strength is decreased by them continuously. The stress-hysteresis is affected by the atmospheric temperature changes, whose behavior is visco-elasticity, usually. Therefore, to do ideal body analysis, Kelvin model could be used to analyze the frost-thawing behavior in winter. In general, rock slope failure occurs by the deterioration of rocks, which is caused by the repetition of freezing-thawing process. In order to keep the safety of such rock mass structures the deterioration process of rock needs to be described quantitatively using some meaningful parameters. In this work, the deterioration process in freezing-thawing cycle of tuff, which is a famous soft porous rock, is investigated through laboratory tests and successfully described as a differential equation for the change of porosity. And then, the deterioration of the mechanical properties of rock, such as Young's modulus and uniaxial compressive strength, are quantitatively described as a function of the porosity.

Damage identification in a wrought iron railway bridge using the inverse analysis of the static stress response under rail traffic loading

  • Sidali Iglouli;Nadir Boumechra;Karim Hamdaoui
    • Smart Structures and Systems
    • /
    • v.32 no.3
    • /
    • pp.153-166
    • /
    • 2023
  • Health monitoring of civil infrastructures, in particular, old bridges that are still in service, has become more than necessary, given the risk that a possible degradation or failure of these infrastructures can induce on the safety of users in addition to the resulting commercial and economic impact. Bridge integrity assessment has attracted significant research efforts over the past forty years with the aim of developing new damage identification methods applicable to real structures. The bridge of Ouled Mimoun (Tlemcen, Algeria) is one of the oldest railway structure in the country. It was built in 1889. This bridge, which is too low with respect to the level of the road, has suffered multiple shocks from various machines that caused considerable damage to its central part. The present work aims to analyze the stability of this bridge by identifying damages and evaluating the damage rate in different parts of the structure on the basis of a finite element model. The applied method is based on an inverse analysis of the normal stress responses that were calculated from the corresponding recorded strains, during the passage of a real train, by means of a set of strain gauges placed on certain elements of the bridge. The results obtained from the inverse analysis made it possible to successfully locate areas that were really damaged and to estimate the damage rate. These results were also used to detect an excessive rigidity in certain elements due to the presence of plates, which were neglected in the numerical reference model. In the case of the continuous bridge monitoring, this developed method will be a very powerful tool as a smart health monitoring system, allowing engineers to take in time decisions in the event of bridge damage.

Machine learning techniques for reinforced concrete's tensile strength assessment under different wetting and drying cycles

  • Ibrahim Albaijan;Danial Fakhri;Adil Hussein Mohammed;Arsalan Mahmoodzadeh;Hawkar Hashim Ibrahim;Khaled Mohamed Elhadi;Shima Rashidi
    • Steel and Composite Structures
    • /
    • v.49 no.3
    • /
    • pp.337-348
    • /
    • 2023
  • Successive wetting and drying cycles of concrete due to weather changes can endanger the safety of engineering structures over time. Considering wetting and drying cycles in concrete tests can lead to a more correct and reliable design of engineering structures. This study aims to provide a model that can be used to estimate the resistance properties of concrete under different wetting and drying cycles. Complex sample preparation methods, the necessity for highly accurate and sensitive instruments, early sample failure, and brittle samples all contribute to the difficulty of measuring the strength of concrete in the laboratory. To address these problems, in this study, the potential ability of six machine learning techniques, including ANN, SVM, RF, KNN, XGBoost, and NB, to predict the concrete's tensile strength was investigated by applying 240 datasets obtained using the Brazilian test (80% for training and 20% for test). In conducting the test, the effect of additives such as glass and polypropylene, as well as the effect of wetting and drying cycles on the tensile strength of concrete, was investigated. Finally, the statistical analysis results revealed that the XGBoost model was the most robust one with R2 = 0.9155, mean absolute error (MAE) = 0.1080 Mpa, and variance accounted for (VAF) = 91.54% to predict the concrete tensile strength. This work's significance is that it allows civil engineers to accurately estimate the tensile strength of different types of concrete. In this way, the high time and cost required for the laboratory tests can be eliminated.

Numerical study of the flow and heat transfer characteristics in a scale model of the vessel cooling system for the HTTR

  • Tomasz Kwiatkowski;Michal Jedrzejczyk;Afaque Shams
    • Nuclear Engineering and Technology
    • /
    • v.56 no.4
    • /
    • pp.1310-1319
    • /
    • 2024
  • The reactor cavity cooling system (RCCS) is a passive reactor safety system commonly present in the designs of High-Temperature Gas-cooled Reactors (HTGR) that removes heat from the reactor pressure vessel by means of natural convection and radiation. It is one of the factors responsible for ensuring that the reactor does not melt down under any plausible accident scenario. For the simulation of accident scenarios, which are transient phenomena unfolding over a span of up to several days, intermediate fidelity methods and system codes must be employed to limit the models' execution time. These models can quantify radiation heat transfer well, but heat transfer caused by natural convection must be quantified with the use of correlations for the heat transfer coefficient. It is difficult to obtain reliable correlations for HTGR RCCS heat transfer coefficients experimentally due to such a system's size. They could, however, be obtained from high-fidelity steady-state simulations of RCCSs. The Rayleigh number in RCCSs is too high for using a Direct Numerical Simulation (DNS) technique; thus, a Reynolds-Averaged Navier-Stokes (RANS) approach must be employed. There are many RANS models, each performing best under different geometry and fluid flow conditions. To find the most suitable one for simulating an RCCS, the RANS models need to be validated. This work benchmarks various RANS models against three experiments performed on the HTTR RCCS Mockup by the Japanese Atomic Energy Agency (JAEA) in 1993. This facility is a 1/6 scale model of a vessel cooling system (VCS) for the High Temperature Engineering Test Reactor (HTTR), which is operated by JAEA. Multiple RANS models were evaluated on a simplified 2d-axisymmetric geometry. They were found to reproduce the experimental temperature profiles with errors of up to 22% for the lowest temperature benchmark and 15% for the higher temperature benchmarks. The results highlight that the pragmatic turbulence models need to be validated for high Rayleigh natural convection-driven flows and improved accordingly, more publicly available experimental data of RCCS resembling experiments is needed and indicate that a 2d-axisymmetric geometry approximation is likely insufficient to capture all the relevant phenomena in RCCS simulations.