• Title/Summary/Keyword: safety threshold

Search Result 351, Processing Time 0.029 seconds

Cardiovascular-metabolic Diseases Affecting Hearing loss in Workers Exposed to Noise (소음 노출 근로자의 청력손실에 미치는 심혈관-대사성 질환의 영향)

  • KyooSang Kim;Jungmin Sung;Eun-A Kim
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.33 no.3
    • /
    • pp.332-345
    • /
    • 2023
  • Objectives: We examined the association of hearing with cardio-metabolic diseases, dyslipidemia, hypertension and diabetes mellitus according to the personal and occupational characteristics of workers exposed to noise. Methods: The subjects of the study were 237,028 workers who underwent 2, 3, and 4 kHz airway pure tone audiometry in 2015 and who underwent clinical tests to diagnose cardiovascular-metabolic diseases. Cardiovascular-metabolic diseases were defined using reference values for respective items including blood pressure (systolic/diastolic), fasting blood glucose, cholesterol, and triglycerides. The airway pure tone hearing threshold of 2, 3, and 4 kHz, the average threshold of 2-3-4 kHz, and the hearing loss by the average threshold of the primary examination were distinguished. Results: Workers with cardiovascular-metabolic disease had significantly higher average hearing thresholds and higher rates of hearing loss. Logistic regression analysis, which adjusted for demographic variables of gender and age and occupational variables such as workplace size, industry, and type of work, and cardiovascular-metabolic disease as independent variables, showed that the odds ratio of hypertension to hearing loss in the mid-frequency was 1.239 (95% confidence interval: 1.118-1.374). For hypertension was 1.159 (1.107-1.214) and for diabetes it was 1.166 (1.104-1.230) for hearing loss in the high-frequency. Hearing loss measured by mean hearing was 1.178 (1.105-1.256) for hypertension and 1.181 (1.097-1.271) for diabetes. Conclusions: Cardiovascular-metabolic diseases in noise-exposed workers are associated with an increased risk of hearing loss and should be accompanied by bio-monitoring of cardiovascular-metabolic diseases in addition to auditory surveillance.

Verification of the Appropriateness of the Standard for Tunnel Luminance in the Threshold Zone Through a Full-scale Tunnel Driving Test (실 규모 터널 주행실험을 통한 터널 경계부 휘도 기준의 적정성 검증)

  • Park, Won Il;Cho, Won Bum;Jeong, Jun Hwa
    • International Journal of Highway Engineering
    • /
    • v.17 no.6
    • /
    • pp.105-115
    • /
    • 2015
  • PURPOSES : This study aimed to evaluate the appropriateness of safety with the standard for threshold zone luminance as specified in the Recommendation for Lighting of Traffic Tunnel, which has been widely adopted worldwide. METHODS : A driving test of the subject in a full-scale road tunnel was conducted. The adaptation luminance and threshold zone luminance, which should be known for the driver to perceive an object within stopping sight distance, were obtained. These values were compared with the adaptation luminance and threshold zone luminance obtained by the existing reduced model test and tunnel lighting standard that has served as a guideline for the current threshold zone luminance standard. RESULTS : According to this study, threshold zone luminance should be increased to at least 1.8 times the value proposed in the existing studies and to twice the domestic tunnel lighting standard (KS C 3703: 2014). CONCLUSIONS : The threshold zone luminance proposed in this study differs largely from that obtained from indoor tests and from the current tunnel lighting standard used worldwide; this difference may be attributed to the fact that the indoor tests did not incorporate driving workload, non-uniformity of luminance distribution in terms of sight, and factors that reduce the visibility of the driver, such as the light reflected into the driver's eyes. Hence, it is necessary to further review the factors that reduce the visibility of drivers approaching tunnels in order to determine the rational tunnel threshold zone luminance.

Physiological effects of magnesium in the guinea pig hearts (기니픽 심장에서 magnesium의 생리학적 영향)

  • Chang, Sung-eun;Kim, Shang-jin;Kang, Hyung-sub;Kim, Jin-shang
    • Korean Journal of Veterinary Research
    • /
    • v.41 no.3
    • /
    • pp.311-317
    • /
    • 2001
  • In this work we have investigated the physiological effects of $MgCl_2$ in isolated atrium, papillary muscle, perfused heart and anesthesized guinea pig, The addition or infusion of $MgCl_2$ (0~20 mM or mg/kg) to perfused hearts and to anesthesized guinea pigs induced a marked and dose-dependent negative chronotropic effect. The sinoatrial node automaticity could also be reduced by $MgCl_2$. The addition of $MgCl_2$to isolated atria and to papillary muscles induced a marked and dose-dependent negative inotropic effect. The threshold voltage could be increased by $MgCl_2$in papillary muscle. Increasing $MgCl_2$ shortened the action potential duration (APD) in dose-dependent manner at 30% ($APD_{30}$) and 90% repolarization ($APD_{90}$) measured with conventional microelectrode technique in papillary muscle. In anesthesized guinea pig, the magnesium infusion resulted in a dose-dependent drop in blood pressure. These results suggested that magnesium is closely associated with cardiac physiological condition and exerts antiarrhythmic activities.

  • PDF

Characterization of Total and Size-Fractionated Manganese Exposure by Work Area in a Shipbuilding Yard

  • Jeong, Jee Yeon;Park, Jong Su;Kim, Pan Gyi
    • Safety and Health at Work
    • /
    • v.7 no.2
    • /
    • pp.150-155
    • /
    • 2016
  • Background: Shipbuilding involves intensive welding activities, and welders are exposed to a variety of metal fumes, including manganese, that may be associated with neurological impairments. This study aimed to characterize total and size-fractionated manganese exposure resulting from welding operations in shipbuilding work areas. Methods: In this study, we characterized manganese-containing particulates with an emphasis on total mass (n = 86, closed-face 37-mm cassette samplers) and particle size-selective mass concentrations (n = 86, 8-stage cascade impactor samplers), particle size distributions, and a comparison of exposure levels determined using personal cassette and impactor samplers. Results: Our results suggest that 67.4% of all samples were above the current American Conference of Governmental Industrial Hygienists manganese threshold limit value of $100{\mu}g/m^3$ as inhalable mass. Furthermore, most of the particles containing manganese in the welding process were of the size of respirable particulates, and 90.7% of all samples exceeded the American Conference of Governmental Industrial Hygienists threshold limit value of $20{\mu}g/m^3$ for respirable manganese. Conclusion: The concentrations measured with the two sampler types (cassette: total mass; impactor: inhalable mass) were significantly correlated (r = 0.964, p < 0.001), but the total concentration obtained using cassette samplers was lower than the inhalable concentration of impactor samplers.

Evaluation on Performance of Accuracy for Analysis and Classification of Data Related to Industrial Accidents (산업재해 데이터의 분석 및 분류를 위한 정확도 성능 평가)

  • Leem Young-Moon;Ryu Chang-Hyun
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2006.04a
    • /
    • pp.51-56
    • /
    • 2006
  • Recently data mining techniques have been used for analysis and classification of data related to industrial accidents. The main objective of this study is to compare performance of algorithms for data analysis of industrial accidents and this paper provides a comparative analysis of 5 kinds of algorithms including CHAID, CART, C4.5, LR (Logistic Regression) and NN (Neural Network) with ROC chart, lift chart and response threshold. In this study, data on 67,278 accidents were analyzed to create risk groups for a number of complications, including the risk of disease and accident. The sample for this work chosen from data related to manufacturing industries during three years $(2002\sim2004)$ in korea. According to the result analysis, NN has excellent performance for data analysis and classification of industrial accidents.

  • PDF

Anti-lock Braking System for Commercial Vehicles with Pneumatic Brake System by Using Slip Ratio (슬립률을 이용한 상용차용 공압식 브레이크 기반 ABS 알고리즘 개발)

  • Kim, Jayu;Kwon, Baeksoon;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.12 no.2
    • /
    • pp.21-26
    • /
    • 2020
  • This paper presents an anti-lock braking system for commercial vehicles with pneumatic brake system by using slip ratio. By virtue of system reliability, most commercial vehicles adopt pneumatic brake system. However, pneumatic brake systems control is more difficult than hydraulic systems due to a longer time delay and the system nonlinearity. One of the major factors in generating braking forces is the wheel slip ratio. Accordingly, the proposed ABS strategy employs the slip ratio threshold-based valve on/off control. This threshold-based algorithm is simple but effective to control the pneumatic brake systems. The control performance of the proposed algorithm has been validated via simulation studies using MATLAB/Simulink and Trucksim. The results show ABS by using slip ratio reduces the braking distance and improves vehicle control.

Residual capacity assessment of in-service concrete box-girder bridges considering traffic growth and structural deterioration

  • Yuanyuan Liu;Junyong Zhou;Jianxu Su;Junping Zhang
    • Structural Engineering and Mechanics
    • /
    • v.85 no.4
    • /
    • pp.531-543
    • /
    • 2023
  • The existing concrete bridges are time-varying working systems, where the maintenance strategy should be planned according to the time-varying performance of the bridge. This work proposes a time-dependent residual capacity assessment procedure, which considers the non-stationary bridge load effects under growing traffic and non-stationary structural deterioration owing to material degradations. Lifetime bridge load effects under traffic growth are predicated by the non-stationary peaks-over-threshold (POT) method using time-dependent generalized Pareto distribution (GPD) models. The non-stationary structural resistance owing to material degradation is modeled by incorporating the Gamma deterioration process and field inspection data. A three-span continuous box-girder bridge is illustrated as an example to demonstrate the application of the proposed procedure, and the time-varying reliability indexes of the bridge girder are calculated. The accuracy of the proposed non-stationary POT method is verified through numerical examples, where the shape parameter of the time-varying GPD model is constant but the threshold and scale parameters are polynomial functions increasing with time. The case study illustrates that the residual flexural capacities show a degradation trend from a slow decrease to an accelerated decrease under traffic growth and material degradation. The reliability index for the mid-span cross-section reduces from 4.91 to 4.55 after being in service for 100 years, and the value is from 4.96 to 4.75 for the mid-support cross-section. The studied bridge shows no safety risk under traffic growth and structural deterioration owing to its high design safety reserve. However, applying the proposed numerical approach to analyze the degradation of residual bearing capacity for bridge structures with low safety reserves is of great significance for management and maintenance.

An Assessment of Notice Exposure by Job and Dosimeter Parameters Setting in Automobile Press Factory (자동차 프레스 공정에 있어서 직무 및 누적소음기 설정치 차이에 따른 작업자의 소음노출 평가)

  • Jeong, Jee Yeon;Park, Seunghyun;Yi, GwangYong;Lee, Naroo;You, Ki Ho;Park, Junsun;Chung, Ho Keun
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.11 no.3
    • /
    • pp.190-197
    • /
    • 2001
  • Noise-induced hearing loss(NIHL) was the highest rate (43.5%~58.5% from 1996 to 1998) of positive findings through specific medical program in Korea. There were much more NIHL at workers of automobile manufacturing factories than other manufacturing factories. The specific aim of the present study was to determine the noise exposure of automobile press lines, according to their job titles, press line types(auto, semiauto), dosimeter parameters setting. There were a total 11 press lines sampled at a automobile manufacturing company. Among those press lines, 10 press lines were autolines with acoustic enclosure, one semiauto press line was no aucostic enclosure Noise exposure data were sampled for an work shift using noise dosimeter, which recorded both time-weighted average(TWA) and 1-min average. The mean OSHA TWA(Korea TWA with threshold 90) was $80.7dB(A){\pm}4.7dB(A)$ for leader, $82.8dB(A{\pm}4.5dB(A)$ for pallette man, $76.7dB(A){\pm}4.3dB(A)$ for press operators, $76.6dB(A){\pm}5.6dB(A)$ for crane operators, $77.1dB(A){\pm}2.8dB(A)$ for forklift drivers, whereas the mean NIOSH TWA was $88.9dB(A){\pm}1.7dB(A)$ for leader, $89.6dB(A){\pm}2.1dB(A)$ for pallette man, $86.7dB(A){\pm}1.8dB(A)$ for press operators, $88.5dB(A){\pm}2.0dB(A)$ for crane operators, $87.7dB(A){\pm}1.0dB(A)$ for forklift drivers. While L10 for NIOSH TWA samples was 84.8 dB(A) ~ 87.3 dB(A), L10 for OSHA TWA samples was 69.5 dB(A) ~ 77.4 dB(A). L10 means that the TWA for 90% of the samples exceeded L10. Among OSHA TWA(Korea TWA with threshold 90) samples for pallette man, 7.7 % exceeded 90 dB(A), the OSHA permissible exposure level, but OSHA TWA samples for the other job titles didn't. Among NIOSH TWA samples, the samples over 85 dB(A), the NIOSH recommended exposure limit, was 100% (leaders), 83.3 %(operators), 97.4%(palletteman), 100%(forklift drivers), 91.7 %(crane operator). The results of One-way random effects analysis of variance models shows that the difference between job titles was significant by OSHA TWA(p<0.05), but not significant by NIOSH TWA(p>0.05). NIOSH TWA samples were significantly higher than OSHA TWA samples(P<0.05). Regression analysis was used to obtain relationships between OSHA TWA samples and NIOSH TWA samples. In this case the coefficient of determination = 0.90, which shows the high degree association between two methods. Regression equation, NIOSH TWA = 0.552 * OSHA TWA + 42.13 dB(A), shows that if OSHA TWA is known, NIOSH TWA can be predicted by the equation. The mean TWA difference between threshold 80 dBA and 90 dBA was significant(p<0.01). While the TWA noise exposures were 7.7% above the Korea(OSHA) PEL, they were more than 83.3% over NIOSH REL. Automobile workers were exposed to noise level that could be potentially damaging to their hearing. It found that there is approximately 25% excess risk of hearing loss even if a worker is protected to the PEL in according to NIOSH study.

  • PDF

Performance Analysis and Automatic Configuration of Threshold on Anti-Pinch System Based on Current Information for Power Windows (전류정보 기반의 파워 윈도우용 안티핀치 시스템의 전류 임계값 자동 설정 및 성능 분석)

  • Park, Seung-Seob;Jeong, Seok-Kwon
    • Journal of Power System Engineering
    • /
    • v.21 no.5
    • /
    • pp.63-70
    • /
    • 2017
  • This paper deals with anti-pinch system based on current information which prevents some risks for trapping, squeezing or injury to people in smart window on vehicles. Automatic configuration of current threshold is suggested to recognize pinch states in the current based anti-pinch system. Also, some factors affecting to the squeezing force were analyzed by some experimental results and simulations. The validity of the suggested system was verified to satisfy the strengthened American safety regulation, FMVSS 118-S5, through some experimental results.

Detecting Abnormal Human Movements Based on Variational Autoencoder

  • Doi Thi Lan;Seokhoon Yoon
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.15 no.3
    • /
    • pp.94-102
    • /
    • 2023
  • Anomaly detection in human movements can improve safety in indoor workplaces. In this paper, we design a framework for detecting anomalous trajectories of humans in indoor spaces based on a variational autoencoder (VAE) with Bi-LSTM layers. First, the VAE is trained to capture the latent representation of normal trajectories. Then the abnormality of a new trajectory is checked using the trained VAE. In this step, the anomaly score of the trajectory is determined using the trajectory reconstruction error through the VAE. If the anomaly score exceeds a threshold, the trajectory is detected as an anomaly. To select the anomaly threshold, a new metric called D-score is proposed, which measures the difference between recall and precision. The anomaly threshold is selected according to the minimum value of the D-score on the validation set. The MIT Badge dataset, which is a real trajectory dataset of workers in indoor space, is used to evaluate the proposed framework. The experiment results show that our framework effectively identifies abnormal trajectories with 81.22% in terms of the F1-score.