• Title/Summary/Keyword: safety procedure

Search Result 1,758, Processing Time 0.02 seconds

Development of an Objective Judgement Procedure for Determining Involvement of Violation-Type Unsafe Acts caused Industrial Accidents (사고 유발 불안전행동의 위반 여부에 대한 객관적 판단절차 개발)

  • Lim, Hyeon Kyo;Ham, Seung Eon;Bak, Geon Yeong;Lee, Yong Hee
    • Journal of the Korean Society of Safety
    • /
    • v.37 no.2
    • /
    • pp.35-42
    • /
    • 2022
  • When an accident occurs, the associated human activity is typically regarded as a "human error," or a temporal deviation. On the other hand, if the accident results in a serious loss or if it evokes a social issue, the person determined to be responsible may be punished with a "violation" of related laws or regulations. However, as Heinrich stated, it is neither appropriate nor reasonable in terms of probability theory and cognitive science to distinguish whether it is a "human error" or a "violation" with a criterion of resultant accident severity. Nonetheless, some in society get on the social climate to strengthen regulations on workers who have caused accidents, especially violations. This response can present a social issue due to the lack of systematic judgment procedure which distinguishes violations from human errors. The purpose of this study was to develop an objective and systematic procedure to assess whether workers' activities which induced industrial accidents should be categorized as violations rather than human errors. Various analysis techniques for the determination of violation procedure were investigated and compared using an analysis approach method. An appropriate technique was not found, however, for judging the culpability of intentional violations. As an alternative, this study developed the process of creating violations, based on cognitive procedure, as well as the criteria to determine and categorize an activity as a violation. In addition, the developed procedure was applied to cases of industrial accidents and nuclear power plant issues to test its practical applicability. The study demonstrated that the proposed model could be used to determine the existence of a violation even in the case of multiple workers who work simultaneously.

A Study on the Prospective Safety Analysis Procedure for Safety Control System (안전제어시스템의 사전 안전성 해석절차 연구)

  • Joung, E.J.;Lee, J.W.;Hwang, J.G.;Kim, Y.M.
    • Proceedings of the KIEE Conference
    • /
    • 2000.11b
    • /
    • pp.402-404
    • /
    • 2000
  • The train control system using radio is based on the radio communication between an on-board control system and a ground control system unlike other train control systems that rely on track circuit. To realize a new train control system based on a new principle, it is important to analyze safety in a systematic manner at an early stage, and identify important factors for the system. For this reason, we think a procedure that select hazards and identify their causes and allocate safety requirements to such hazards. This paper describes this procedure to realize system safety.

  • PDF

A Design Procedure for Safety Simulation System Using Virtual Reality

  • Jae-seug Ki
    • Proceedings of the Safety Management and Science Conference
    • /
    • 1999.11a
    • /
    • pp.381-389
    • /
    • 1999
  • One of the objectives of any task design is to provide a safe and helpful workplace for the employees. The safety and health module may include means for confronting the design with safety and health regulations and standards as well as tools for obstacles and collisions detection (such as error models and simulators). Virtual Reality is a leading edge technology which has only very recently become available on platforms and at prices accessible to the majority of simulation engineers. The design of an automated manufacturing system is a complicated, multidisciplinary task that requires involvement of several specialists. In this paper, a design procedure that facilitates the safety and ergonomic considerations of an automated manufacturing system are described. The procedure consists of the following major steps: Data collection and analysis of the data, creation of a three-dimensional simulation model of the work environment, simulation for safety analysis and risk assessment, development of safety solutions, selection of the preferred solutions, implementation of the selected solutions, reporting, and training When improving the safety of an existing system the three-dimensional simulation model helps the designer to perceive the work from operators point of view objectively and safely without the exposure to hazards of the actual system.

  • PDF

Requirements for Operation Procedure and Plan for the Korean Aviation Safety Big-Data Platform based on the Case of FAA ASIAS (국내 항공안전 빅데이터 플랫폼 운영관리체계 수립 중점 - FAA ASIAS를 중심으로 -)

  • Kim, Jun Hwan;Lim, Jae Jin;Park, Yu Rim;Lee, Jang Ryong
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.29 no.4
    • /
    • pp.105-116
    • /
    • 2021
  • The importance of a systematic approach to collect, process, analyze, and share safety data in aviation safety management is continuously increasing. Accordingly, the domestic aviation industry has been making efforts to build a Big-data platform that can utilize multi-field safety data generated and managed by various stakeholders and to develop safety management technology based on them. Big data platforms not only must meet appropriate technical requirements, but also need to establish a management system for effective operation. The purpose of this study is to suggest the requirements of the aviation safety big data platform operation procedure and plan by reviewing the advanced overseas cases (FAA ASIAS). This study can provide overall framework and managerial direction for the operation of the aviation safety big data platform.

Development of Internal Dose Assessment Procedure for Workers in Industries Using Raw Materials Containing Naturally Occurring Radioactive Materials

  • Choi, Cheol Kyu;Kim, Yong Geon;Ji, Seung Woo;Koo, Boncheol;Chang, Byung Uck;Kim, Kwang Pyo
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.3
    • /
    • pp.291-300
    • /
    • 2016
  • Background: It is necessary to assess radiation dose to workers due to inhalation of airborne particulates containing naturally occurring radioactive materials (NORM) to ensure radiological safety required by the Natural Radiation Safety Management Act. The objective of this study is to develop an internal dose assessment procedure for workers at industries using raw materials containing natural radionuclides. Materials and Methods: The dose assessment procedure was developed based on harmonization, accuracy, and proportionality. The procedure includes determination of dose assessment necessity, preliminary dose estimation, airborne particulate sampling and characterization, and detailed assessment of radiation dose. Results and Discussion: The developed dose assessment procedure is as follows. Radioactivity concentration criteria to determine dose assessment necessity are $10Bq{\cdot}g^{-1}$ for $^{40}K$ and $1Bq{\cdot}g^{-1}$ for the other natural radionuclides. The preliminary dose estimation is performed using annual limit on intake (ALI). The estimated doses are classified into 3 groups ( < 0.1 mSv, 0.1-0.3 mSv, and > 0.3 mSv). Air sampling methods are determined based on the dose estimates. Detailed dose assessment is performed using air sampling and particulate characterization. The final dose results are classified into 4 different levels ( < 0.1 mSv, 0.1-0.3 mSv, 0.3-1 mSv, and > 1 mSv). Proper radiation protection measures are suggested according to the dose level. The developed dose assessment procedure was applied for NORM industries in Korea, including coal combustion, phosphate processing, and monazite handing facilities. Conclusion: The developed procedure provides consistent dose assessment results and contributes to the establishment of optimization of radiological protection in NORM industries.

Factors Affecting Nursing Students' Perception on Pediatric Patient Safety Culture and Nursing Activity (간호대학생의 입원아동 안전간호활동 인식 영향 요인)

  • Park, Eunsook;Oh, Won-Oak;Kim, Mirim
    • Child Health Nursing Research
    • /
    • v.23 no.4
    • /
    • pp.534-542
    • /
    • 2017
  • Purpose: The purpose of this study was to identify the factors that affect nursing students' perception of pediatric safety nursing activities for children during hospitalization. Methods: The study sample included 304 nursing students who had participated in pediatric nursing practice. Data were analyzed using SAS 9.3 program. Results: Regression analysis showed that the model's explanatory power was 37%. Safety policy and procedure, safety priority, disaster experience, and knowing a place of refuge were factors affecting the perception of safety nursing activities for children during hospitalization. Conclusion: Findings show that safety policy and procedures and safety priority are major factors that affect the perception of safety nursing activities and indicate that effective education programs on safety policy and procedure and safety priority are necessary to improve the perception of safety nursing activities.

A Proposal for Improved Safety Assessment Procedure of Corrugated Steel Plate Structures Using Measured Displacements (파형강판 구조물의 내공변위를 활용한 개선된 안전도 평가 절차 제안)

  • Jeon, Se-Jin;Lee, Byeong-Ju
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.1
    • /
    • pp.13-24
    • /
    • 2020
  • A systematic approach to assess the safety of corrugated steel plate structures has not been established yet. Therefore, an improved safety assessment procedure was proposed in this study by considering the characteristics of corrugated steel plate structures in which the dead load of backfill soil is dominant and the live load effect is minimized. The proposed procedure can consider the combined effect of axial force and bending moment on the safety, based on the Soil-Culvert Interaction (SCI) method, and can differentiate the maintenance scheme according to the calculated plasticity index. There is also an advantage in enhancing the accuracy of assessment, utilizing the measured displacements. Furthermore, improved methods were proposed by discussing various ways for reasonably improving the proposed assessment procedure. The safety of an actual structure and a full-scale test specimen was assessed by applying the proposed procedure. The conventional assessment procedure significantly overestimated the load-carrying capacity, whereas the proposed procedure resulted in a reasonable level of safety. Therefore, the procedure proposed in this study is expected to contribute to the establishment of proper maintenance plan such as the quantitative condition assessment and strengthening of corrugated steel plate structure.

OPERATOR BEHAVIORS OBSERVED IN FOLLOWING EMERGENCY OPERATING PROCEDURE UNDER A SIMULATED EMERGENCY

  • Choi, Sun-Yeong;Park, Jin-Kyun
    • Nuclear Engineering and Technology
    • /
    • v.44 no.4
    • /
    • pp.379-386
    • /
    • 2012
  • A symptom-based procedure with a critical safety function monitoring system has been established to reduce the operator's diagnosis and cognitive burden since the Three-Mile Island (TMI) accident. However, it has been reported that a symptom-based procedure also requires an operator's cognitive efforts to cope with off-normal events. This can be caused by mismatches between a static model, an emergency operating procedure (EOP), and a dynamic process, the nature of an ongoing situation. The purpose of this study is to share the evidence of mismatches that may result in an excessive cognitive burden in conducting EOPs. For this purpose, we analyzed simulated emergency operation records and observed some operator behaviors during the EOP operation: continuous steps, improper description, parameter check at a fixed time, decision by information previously obtained, execution complexity, operation by the operator's knowledge, notes and cautions, and a foldout page. Since observations in this study are comparable to the results of an existing study, it is expected that the operational behaviors observed in this study are generic features of operators who have to cope with a dynamic situation using a static procedure.

Study on Reliability Assessment for the Medical Device Software from the Viewpoint of Functional Safety (기능 안전 관점에서의 의료기기 소프트웨어 신뢰성 평가 방법에 관한 연구)

  • Kim, Sung Min;Ko, Byeonggak;Do, Gyeong-Hun;Kim, Hye Jin;Ham, Jung-Keol
    • Journal of Applied Reliability
    • /
    • v.16 no.3
    • /
    • pp.216-223
    • /
    • 2016
  • Purpose: This paper suggests the procedure to enhance the reliability of the software of the medical device that is to cure, treat, diagnose, and prevent a disease or an abnormal health conditions. Methods: After test requirements are classified by the software requirements specification for safety and backgrounds, reliability assessment methods are suggested. Results: Verification and validation for function and safety can be performed whether the medical device software are implemented as intended. Conclusion: Procedure on the static analysis, unit test, integration test, and system test are provided for the medical device software.

An integrated risk-informed safety classification for unique research reactors

  • Jacek Kalowski;Karol Kowal
    • Nuclear Engineering and Technology
    • /
    • v.55 no.5
    • /
    • pp.1814-1820
    • /
    • 2023
  • Safety classification of systems, structures, and components (SSC) is an essential activity for nuclear reactor design and operation. The current regulatory trend is to require risk-informed safety classification that considers first, the severity, but also the frequency of SSC failures. While safety classification for nuclear power plants is covered in many regulatory and scientific publications, research reactors received less attention. Research reactors are typically of lower power but, at the same time, are less standardized i.e., have more variability in the design, operational modes, and operating conditions. This makes them more challenging when considering safety classification. This work presents the Integrated Risk-Informed Safety Classification (IRISC) procedure which is a novel extension of the IAEA recommended process with dedicated probabilistic treatment of research reactor designs. The article provides the details of probabilistic analysis performed within safety classification process to a degree that is often missing in most literature on the topic. The article presents insight from the implementation of the procedure in the safety classification for the MARIA Research Reactor operated by the National Center for Nuclear Research in Poland.