• Title/Summary/Keyword: safety net

Search Result 1,568, Processing Time 0.03 seconds

Verification and improvement of dynamic motion model in MARS for marine reactor thermal-hydraulic analysis under ocean condition

  • Beom, Hee-Kwan;Kim, Geon-Woo;Park, Goon-Cherl;Cho, Hyoung Kyu
    • Nuclear Engineering and Technology
    • /
    • v.51 no.5
    • /
    • pp.1231-1240
    • /
    • 2019
  • Unlike land-based nuclear power plants, a marine or floating reactor is affected by external forces due to ocean conditions. These external forces can cause additional accelerations and affect each system and equipment of the marine reactor. Therefore, in designing a marine reactor and evaluating its performance and stability, a thermal hydraulic safety analysis code is necessary to consider the thermal hydrodynamic effects of ship motion. MARS, which is a reactor system analysis code, includes a dynamic motion model that can simulate the thermal-hydraulic phenomena under three-dimensional motion by calculating the body force term included in the momentum equation. In this study, it was verified that the dynamic motion model can simulate fluid motion with reasonable accuracy using conceptual problems. In addition, two modifications were made to the dynamic motion model; first, a user-supplied table to simulate a realistic ship motion was implemented, and second, the flow regime map determination algorithm was improved by calculating the volume inclination information at every time step if the dynamic motion model was activated. With these modifications, MARS could simulate the thermal-hydraulic phenomena under ocean motion more realistically.

The Analysis for Korea Web-board Game Regulation (국내 웹보드 게임 규제 분석)

  • Song, Seung-keun;Yoon, Claire
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.183-184
    • /
    • 2016
  • This study aims to suggest relaxed regulation plans for web-board games by analyzing regulations on gambling games with online and mobile platforms. One of the controversial issues in the South Korean game industry these days is legal regulations related to 'gambling'. Gambling is one of its ambivalent factors, which is necessary for fun of these games but has risks of overindulgence and addiction. This study analysis the web-board enforcement ordinance from Feb. 2014 and current relaxed regulation. Moreover, we find the plan which will be relaxed to regulation under what safety net. We propose the solution of web-board regulation policy which is available for an adult.

  • PDF

Burst criterion for Indian PHWR fuel cladding under simulated loss-of-coolant accident

  • Suman, Siddharth
    • Nuclear Engineering and Technology
    • /
    • v.51 no.6
    • /
    • pp.1525-1531
    • /
    • 2019
  • The indigenous nuclear power program of India is based mainly on a series of Pressurised Heavy Water Reactors (PHWRs). A burst correlation for Indian PHWR fuel claddings has been developed and empirical burst parameters are determined. The burst correlation is developed from data available in literature for single-rod transient burst tests performed on Indian PHWR claddings in inert environment. The heating rate and internal overpressure were in the range of 7 K/s-73 K/s and 3 bar-80 bar, respectively, during the burst tests. A burst criterion for inert environment, which assumes that deformation is controlled by steady state creep, has been developed using the empirical burst parameters. The burst criterion has been validated with experimental data reported in literature and the prediction of burst parameters is in a fairly good agreement with the experimental data. The burst criterion model reveals that increasing the heating rate increases the burst temperature. However, at higher heating rates, burst strain is decreased considerably and an early rupture of the claddings without undergoing considerable ballooning is observed. It is also found that the degree of anisotropy has significant influence on the burst temperature and burst strain. With increasing degree of anisotropy, the burst temperature for claddings increases but there is a decrease in the burst strain. The effect of anisotropy in the ${\alpha}$-phase is carried over to ${\alpha}+{\beta}$-phase and its effect on the burst strain in the ${\alpha}+{\beta}$-phase too can be observed.

Crack growth rate evaluation of alloys 690/152 by numerical simulation of extracted CT specimens

  • Lee, S.H.;Kim, S.W.;Cho, C.H.;Chang, Y.S.
    • Nuclear Engineering and Technology
    • /
    • v.51 no.7
    • /
    • pp.1805-1815
    • /
    • 2019
  • While nickel-based alloys have been widely used for power plants due to corrosion resistance and good mechanical properties, during the last couple of decades, failures of nuclear components increased gradually. One of main degradation mechanisms was primary water stress corrosion cracking at dissimilar metal welds of piping and reactor head penetrations. In this context, precise estimation of welding effects became an important issue for ensuring reliability of them. The present study deals with a series of finite element analyses and crack growth rate evaluation of Alloys 690/152. Firstly, variation of residual stresses and equivalent plastic strains was simulated taking into account welding of a cylindrical block. Subsequently, extraction and pre-cracking of compact tension (CT) specimens were considered from different locations of the block. Finally, crack growth curves of the alloys and heat affected zone were developed based on analyses results combined with experimental data in references. Characteristics of crack growth behaviors were also discussed in relation to mechanical and fracture parameters.

Seismic responses of nuclear reactor vessel internals considering coolant flow under operating conditions

  • Park, Jong-beom;Lee, Sang-Jeong;Lee, Eun-ho;Park, No-Cheol;Kim, Yong-beom
    • Nuclear Engineering and Technology
    • /
    • v.51 no.6
    • /
    • pp.1658-1668
    • /
    • 2019
  • Nuclear power generates a large portion of the energy used today and plays an important role in energy development. To ensure safe nuclear power generation, it is essential to conduct an accurate analysis of reactor structural integrity. Accordingly, in this study, a methodology for obtaining accurate structural responses to the combined seismic and reactor coolant loads existing prior to the shutdown of a nuclear reactor is proposed. By applying the proposed analysis method to the reactor vessel internals, it is possible to derive the seismic responses considering the influence of the hydraulic loads present during operation for the first time. The validity of the proposed methodology is confirmed in this research by using the finite element method to conduct seismic and hydraulic load analyses of the advanced APR1400 1400 MWe power reactor, one of the commercial reactors. The structural responses to the combined applied loads are obtained using displacement-based and stress-based superposition methods. The safety of the subject nuclear reactor is then confirmed by analyzing the design margin according to the American Society for Mechanical Engineers (ASME) evaluation criteria, demonstrating the promise of the proposed analysis method.

A flammability limit model for hydrogen-air-diluent mixtures based on heat transfer characteristics in flame propagation

  • Jeon, Joongoo;Choi, Wonjun;Kim, Sung Joong
    • Nuclear Engineering and Technology
    • /
    • v.51 no.7
    • /
    • pp.1749-1757
    • /
    • 2019
  • Predicting lower flammability limits (LFL) of hydrogen has become an ever-important task for safety of nuclear industry. While numerous experimental studies have been conducted, LFL results applicable for the harsh environment are still lack of information. Our aim is to develop a calculated non-adiabatic flame temperature (CNAFT) model to better predict LFL of hydrogen mixtures in nuclear power plant. The developed model is unique for incorporating radiative heat loss during flame propagation using the CNAFT coefficient derived through previous studies of flame propagation. Our new model is more consistent with the experimental results for various mixtures compared to the previous model, which relied on calculated adiabatic flame temperature (CAFT) to predict the LFL without any consideration of heat loss. Limitation of the previous model could be explained clearly based on the CNAFT coefficient magnitude. The prediction accuracy for hydrogen mixtures at elevated initial temperatures and high helium content was improved substantially. The model reliability was confirmed for $H_2-air$ mixtures up to $300^{\circ}C$ and $H_2-air-He$ mixtures up to 50 vol % helium concentration. Therefore, the CNAFT model developed based on radiation heat loss is expected as the practical method for predicting LFL in hydrogen risk analysis.

Analysis of interface management tasks in a digital main control room

  • Choi, Jeonghun;Kim, Hyoungju;Jung, Wondea;Lee, Seung Jun
    • Nuclear Engineering and Technology
    • /
    • v.51 no.6
    • /
    • pp.1554-1560
    • /
    • 2019
  • Development of digital main control rooms (MCRs) has greatly changed operating environments by altering operator tasks, and thus the unique characteristics of digital MCRs should be considered in terms of human reliability analysis. Digital MCR tasks can be divided into primary tasks that directly supply control input to the plant equipment, and secondary tasks that include interface management conducted via soft controls (SCs). Operator performance regarding these secondary tasks must be evaluated since such tasks did not exist in previous analog systems. In this paper, we analyzed SC-related tasks based on simulation data, and classified the error modes of the SCs following analysis of all operational tasks. Then, we defined the factors to be considered in human reliability analysis methods regarding the SCs; such factors are mainly related to interface management and computerized operator support systems. As these support systems function to reduce the number of secondary tasks required for SC, we conducted an assessment to evaluate the efficiency of one such support system. The results of this study may facilitate the development of training programs as well as help to optimize interface design to better reflect the interface management task characteristics of digitalized MCRs.

Validation of the fuel rod performance analysis code FRIPAC

  • Deng, Yong-Jun;Wei, Jun;Wang, Yang;Zhang, Bin
    • Nuclear Engineering and Technology
    • /
    • v.51 no.6
    • /
    • pp.1596-1609
    • /
    • 2019
  • The fuel rod performance has great importance for the safety and economy of an operating reactor. The fuel rod performance analysis code, which considers the thermal-mechanical response and irradiation effects of fuel rod, is usually developed in order to predict fuel rod performance accurately. The FRIPAC (${\underline{F}}uel$ ${\underline{R}}od$ ${\underline{I}}ntegral$ ${\underline{P}}erformance$ ${\underline{A}}nalysis$ ${\underline{C}}ode$) is such a fuel rod performance analysis code that has been developed recently by China Nuclear Power Technology Research Institute Co. Ltd. The code aims at the computational simulation of the Pressurized Water Reactor fuel rod behavior for both steady-state and power ramp condition. A brief overview of FRIPAC is presented including the computational framework and the main behavioral models. Validation of the code is also presented and it focuses on the fuel rod behavior including fuel center temperature, fission gas release, rod internal pressure/internal void volume, cladding outer diameter and cladding corrosion thickness. The validation is based on experimental data from several international projects. The validation results indicate that FRIPAC is an accurate and reliable fuel rod performance analysis code because of the satisfactory comparison results between the experimental measurements and the code predictions.

A practical challenge-response authentication mechanism for a Programmable Logic Controller control system with one-time password in nuclear power plants

  • Son, JunYoung;Noh, Sangkyun;Choi, JongGyun;Yoon, Hyunsoo
    • Nuclear Engineering and Technology
    • /
    • v.51 no.7
    • /
    • pp.1791-1798
    • /
    • 2019
  • Instrumentation and Control (I&C) systems of nuclear power plants (NPPs) have been continuously digitalized. These systems have a critical role in the operation of nuclear facilities by functioning as the brain of NPPs. In recent years, as cyber security threats to NPP systems have increased, regulatory and policy-related organizations around the world, including the International Atomic Energy Agency (IAEA), Nuclear Regulatory Commission (NRC) and Korea Institute of Nuclear Nonproliferation and Control (KINAC), have emphasized the importance of nuclear cyber security by publishing cyber security guidelines and recommending cyber security requirements for NPP facilities. As described in NRC Regulatory Guide (Reg) 5.71 and KINAC RS015, challenge response authentication should be applied to the critical digital I&C system of NPPs to satisfy the cyber security requirements. There have been no cases in which the most robust response authentication technology like challenge response has been developed and applied to nuclear I&C systems. This paper presents a challenge response authentication mechanism for a Programmable Logic Controller (PLC) system used as a control system in the safety system of the Advanced Power Reactor (APR) 1400 NPP.

The Financial Burden of Catastrophic Health Expenditure Among Older Women Living Alone (여성독거노인가구의 과부담 의료비 지출에 관한 연구)

  • Shin, Serah
    • Journal of Family Resource Management and Policy Review
    • /
    • v.23 no.1
    • /
    • pp.17-34
    • /
    • 2019
  • Older women who live alone are among society's most vulnerable people, since they experience increased risk of multiple chronic diseases and have limited financial protection. This can lead older women living alone to catastrophic health expenditure(CHE), which is defined as a healthcare expenditure that exceeds a certain portion of a household's ability to pay. Using the Korean Longitudinal Study of Ageing(KLoSA), this study investigated the incidence of CHE among older women living alone and identified the factors related to this incidence. Applying health expenditure thresholds of 10%, 20%, 30% and 40% of ability to pay, the proportions of those with CHE were 41.3%, 22.9%, 14.6%, and 9.4%, respectively. Logistic regression models were used to identify factors related to CHE incidence, which include demographics, income, the number of chronic diseases, perceived health status, and health insurance type. The results show that the health care safety net in South Korea is insufficient for older women living alone. The findings can guide policymakers in improving healthcare and welfare policies to protect people from catastrophic payments. Particularly, welfare policies should be established for poor non-recipients who are not included within the benefits scope of the National Basic Livelihood Security System due to the unrealistic criteria of income recognition and family support obligation.