• Title/Summary/Keyword: safety design and operation

Search Result 992, Processing Time 0.032 seconds

The 64-Bit Scrambler Design of the OFDM Modulation for Vehicles Communications Technology (차량 통신 기술을 위한 OFDM 모듈레이션의 64-비트 스크램블러 설계)

  • Lee, Dae-Sik
    • Journal of Internet Computing and Services
    • /
    • v.14 no.1
    • /
    • pp.15-22
    • /
    • 2013
  • WAVE(Wireless Access for Vehicular Environment) is new concepts and Vehicles communications technology using for ITS(Intelligent Transportation Systems) service by IEEE standard 802.11p. Also it increases the efficiency and safety of the traffic on the road. However, the efficiency of Scrambler bit computational algorithms of OFDM modulation in WAVE systems will fall as it is not able to process in parallel in terms of hardware and software. This paper proposes an algorithm to configure 64-bits matrix table in scambler bit computation as well as an algorithm to compute 64-bits matrix table and input data in parallel. The proposed algorithm on this thesis is executed using 64-bits matrix table. In the result, the processing speed for 1 and 1000 times is improved about 40.08% ~ 40.27% and processing rate per sec is performed more than 468.35 compared to bit operation scramble. And processing speed for 1 and 1000 times is improved about 7.53% ~ 7.84% and processing rate per sec is performed more than 91.44 compared to 32-bits operation scramble. Therefore, if the 64 bit-CPU is used for 64-bits executable scramble algorithm, it is improved more than 40% compare to 32-bits scrambler.

Joint Design and Strength Evaluation of Composite Air Spoiler for Ship (선박용 복합재 에어 스포일러의 체결부 설계 및 강도 평가)

  • Pi, June-Woo;Jeon, Sang-Bae;Lee, Guen-Ho;Jo, Young-Dae;Choi, Jin-Ho;Kweon, Jin-Hwe
    • Composites Research
    • /
    • v.28 no.4
    • /
    • pp.219-225
    • /
    • 2015
  • Air spoiler, which can reduce the drag during operation, can be considered as a possible means to reduce carbon dioxide emission and to increase fuel efficiency. In this study, a composite air spoiler was designed and tested by static and repeated loads. The Green Water Pressure of 0.1 MPa a ship experiences during operation was perpendicularly applied to the air spoiler. Air spoiler was manufactured with sandwich panel which has glass fabric face and balsa core. Multiple sandwich panels were assembled to steel frame by bolt joint. The joint was designed to have bearing failure and examined by static and fatigue tests. Tests showed that the designed joint has enough margin of safety to endure joint failure. The developed sandwich panel to air spoiler is planned to be applied to a large scale commercial ship.

AutoML and Artificial Neural Network Modeling of Process Dynamics of LNG Regasification Using Seawater (해수 이용 LNG 재기화 공정의 딥러닝과 AutoML을 이용한 동적모델링)

  • Shin, Yongbeom;Yoo, Sangwoo;Kwak, Dongho;Lee, Nagyeong;Shin, Dongil
    • Korean Chemical Engineering Research
    • /
    • v.59 no.2
    • /
    • pp.209-218
    • /
    • 2021
  • First principle-based modeling studies have been performed to improve the heat exchange efficiency of ORV and optimize operation, but the heat transfer coefficient of ORV is an irregular system according to time and location, and it undergoes a complex modeling process. In this study, FNN, LSTM, and AutoML-based modeling were performed to confirm the effectiveness of data-based modeling for complex systems. The prediction accuracy indicated high performance in the order of LSTM > AutoML > FNN in MSE. The performance of AutoML, an automatic design method for machine learning models, was superior to developed FNN, and the total time required for model development was 1/15 compared to LSTM, showing the possibility of using AutoML. The prediction of NG and seawater discharged temperatures using LSTM and AutoML showed an error of less than 0.5K. Using the predictive model, real-time optimization of the amount of LNG vaporized that can be processed using ORV in winter is performed, confirming that up to 23.5% of LNG can be additionally processed, and an ORV optimal operation guideline based on the developed dynamic prediction model was presented.

Effect the I-T curve and electrical characteristic of fuse elements by plated tin thickness (주석 도금 두께에 따른 퓨즈 가용체의 I-T 커브 및 전기적 특성의 영향)

  • Jin, Sang-Jun;Kim, Eun-Min;Youn, Jae-Seo;Lee, Ye-Ji;Noh, Seong-Yeo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.6
    • /
    • pp.80-87
    • /
    • 2018
  • In recent years, due to the spread of various renewable energy power sources and the pursuit of high efficiency and low-power consumption, not only trends in the electric power industry but also the consumption, control methods, and characteristics are diversified. However, in this diversified electric power industry, the fuse (which is the core part responsible for safety) has not developed significantly in classical operation mode, and thus, fires continue to occur. In this paper, the effects of low melting-point metal plating and high melting-point metal plating on operating characteristics and IT curve movement of the fuse are investigated in a cartridge fuse, which is a classic fuse manufacturing method. The effects of plating on the thickness of the fuse are investigated, and various operating characteristics of the fuse are implemented. In addition, it is suggested that the plating of the low melting-point metal moves the rated current line of the fuse to a low rating, and moves operating characteristics to characteristics of delay operation. It is possible to design various operating characteristics using this characteristic.

Reliability Analysis of Access Door Opening Force Measured with a Digital Force Gauge of a Pressurized Smoke Control Zone and Presentation of Optimum Conditions for the Opening Force (디지털 측정기로 측정된 급기가압 제연구역의 출입문 개방력에 대한 신뢰성 분석 및 최적 조건 제시)

  • Lee, Jae-Ou;Choi, Chung-Seog
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.1
    • /
    • pp.468-473
    • /
    • 2016
  • The aim of this study was to measure the opening force of an access door of a pressurized smoke control zone and verify the reliability of the opening force. For the access door opening force, the opening load of the access door was measured before and after pressurized air had entered the smoke control zone. The reliability of the measured values was verified using the Anderson Darling's statistical analysis method of the Minitab Program. Because the analyzed P values were greater than 0.05 except for some floors before and after the operation of the smoke control equipment, the opening force was found to have 95% reliability. The normal distribution of the measured values showed no relationship with the operation of the smoke control equipment and the precision of the force gauge was believed to be reliable. The major factors for the optimal design of the pressurized smoke control equipment include the precision and reliability of the force gauge, the correct posture of the measuring person, and the same conditions for access doors. Therefore, a digital force gauge is believed to be suitable for measuring the opening force of the access door of a pressurized smoke control zone. In addition, standardization of the posture of a measuring person, the setup of the initial opening force of an access door, etc., are major variables for effective measurements of the door opening force of an access door.

Analysis of Performance Requirements of Mechanical System for Recovery of Deposited Hazardous and Noxious Substances from Seabed around Seaport (항만 해저침적 위험유해물질(HNS) 회수용 기계장치의 성능요건 분석)

  • Hwang, Ho-Jin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.6
    • /
    • pp.681-688
    • /
    • 2020
  • Approximately 6,000 chemicals are transported through the sea, including hazardous and noxious substances (HNS), which cause marine pollution and are harmful to marine life. The HNS discharged into the sea during the maritime transportation process undergoes physical and chemical changes on the sea surface and in seawater, and some types of HNS sink and are deposited on the seabed. The HNS deposited on the seabed adversely affects the benthic ecosystem, and hence, it is desirable to detect, treat, and recover the HNS on the seabed. Therefore, this study was conducted to analyze the performance requirements that should be considered as the top priority when developing a mechanical system for recovering the HNS deposited on the seabed. Various types of existing dredging devices used for collecting and recovering pollutants from river beds and seabeds were investigated, and 10 performance indices for the mechanical devices were selected. The new performance requirements for the development of the seabed-deposited HNS recovery system were proposed using performance indices. By considering the depth of water in domestic seaports, some of the performance requirements of the mechanical system for recovering deposited HNS from the seabed were obtained as follows: production rate (50-300 ㎥/hr), maximum operation depth (50 m), sediment type (most forms), percentage of solids (10 % or higher), horizontal operating accuracy (±10 cm), limiting currents (3-5 knots). These performance requirements are expected to be useful in the conceptual and basic design of mechanical systems for recovering seabed-deposited HNS.

A Study on Construction of Barge Transportaion System between Incheon and Gaesung (인천-개성 항로 바지 수송시스템 구축에 관한 기초적 연구)

  • Kim, Sang-Hyun;Lee, Seung-Hee;Lee, Young-Gill;Yu, Jin-Won
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.14 no.3
    • /
    • pp.227-233
    • /
    • 2008
  • Recently, the transport quantity of goods between South and North Korea is rising rapidly by increasing of economical exchange between South and North Korea and growth of Gaeseoung industrial complex. In addition to a land transportation route, it is necessary to secure various logistics and transportation route for freight transportation between Incheon and Gaesung. In this paper, we investigated a construction of barge transportaion system between Incheon and Gaesung. The barge transportation system which has many merits such as a little initial investment and convenience of harbor loading/ unloading has been also used to transport freight widely in the EU and USA. Firstly, we investigated barge transport route, marine freight and barge fleet which consists of barge and pusher between Incheon and Gaesung. And next, we designed hull form and general arrangement of a barge and pusher based on shipping service condition, barge fleet, etc. Finally, a construction plans of barge transport system such as a operation of shipping service, berthing facilities, logistics center, intermodal transport are investigated.

  • PDF

FMECA Procedure for Failure Analysis of Train High-Speed Circuit Breaker (전동차 고속차단기 고장 분석을 위한 FMECA 기법)

  • Kim, Sung-Ryeol;Moon, Yong-Sun;Choi, Kyu-Hyoung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.5
    • /
    • pp.3370-3377
    • /
    • 2015
  • FMECA(Failure Mode, Effects and Criticality Analysis) techniques to make quantitative evaluation of failure effects severity and criticality have been applied to systematic failure analysis for reliability improvement of train which should provide regular service and secure high level of safety as a mass transportation system. These FMECA techniques do not fully reflect the inherent train operation and maintenance circumstances because they are based on the FMECA standards devised for other industries such as automobile industry and FMECA standard dedicated to train industry has not been established yet. This paper analyzes FMECA standards for various industries, and suggests a FMECA technique dedicated to train industry which makes failure effect analysis and criticality analysis step by step and makes criticality analysis placing emphasis on the severity of the failure effect. The proposed technique is applied to FMECA of high-speed current breaker which is a core safety device of train using field failure data for 15 years of train maintenance. The FMECA results show that breakage of arc chute has the highest risk with 3rd severity class and 5th criticality class among all the components of high-speed circuit breaker. Damage and poor contact of electronic valve, and cylinder breakage with 3rd severity class and 4th criticality class are followed by. These results can be applied to improvement of design and maintenance process for high-speed circuit breaker of train.

Improvement Plan for Construction Management and Legislation of Donation Collection Facilities (기부채납 시설의 건설관리 및 법제에 관한 개선방안)

  • Lee, Juyong;Jung, Youngchul
    • Korean Journal of Construction Engineering and Management
    • /
    • v.25 no.1
    • /
    • pp.3-12
    • /
    • 2024
  • The donation collection system to secure infrastructure and land necessary for public development projects has been actively applied as an effective means of realizing public interest and the concept of recovering development profits, and has contributed greatly to society in public difficult financial conditions. However, due to the ambiguous legal standards and lack of legal grounds for the operation of the donation collection system, it has been arbitrarily used for administrative convenience in the form of granting a donation collection assistant to install infrastructure. In addition, infrastructure is a facility that is constructed and donated within development profits to obtain licenses, and is promoted to minimize construction costs to improve profitability, posing a risk of poor infrastructure planning, design, and construction, resulting in increased safety and maintenance costs for citizens. Continuous system and legal improvement are needed to improve the excellence, convenience, and safety of facilities that citizens will use for half a century through the improvement of the donation system.

A Linear Change of Leakage Current and Insulation Resistance of 22 kV Cables (22 kV 케이블의 누설전류 및 절연저항의 선형적 변화)

  • Um, Kee-Hong;Lee, Kwan-Woo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.3
    • /
    • pp.169-173
    • /
    • 2015
  • This study is to predict the life exponent by measuring, over 7 years, the insulation resistance of high-voltage cables in 22 kV operation for 13 years. We found out the lifetime index in order to determine the time-dependent trend of deteriorating performance of power cables. The insulation resistances decreased according to elapsed time. We found that: the initial measurements of the cable systems were in agreement with the deterioration properties of the Arrhenius Law. By analyzing the life curve of the cable system, we also verified that the value of the life exponent (n) in the v-t characteristics defined by Weibull distribution has values from 10 to 11. When designing the cable system, the initial value of life exponent was chosen as 9 without any grounding. We have verified that the theoretical grounding based on the design safety of n=9 was actually the best one available. In the short term, we apply our research result to the diagnosis and evaluation of the power cables. In the long run, however, we plan to reduce the cost of the installation and management of cable systems in operation at power stations.