• Title/Summary/Keyword: safety components

Search Result 1,827, Processing Time 0.027 seconds

Qualitative Assessment for Hazard on the Electric Power Installations of a Construction Field using FMEA (FMEA를 이용한 건설현장 전력설비의 위험성에 대한 정성적 평가)

  • Kim Doo-hyun;Lee Jong-ho
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.4 s.68
    • /
    • pp.36-41
    • /
    • 2004
  • This paper presents an qualitative assessment for hazard on the electric power installations of a construction field using FMEL The power installations have the mission to maintain the highest level of service reliability on the works. The more capital the electric power invest the higher service reliability they plausibly will achieve. However, because of limited resources, how effectively budgets can be allocated to achieve service reliability as high as possible. The assessment typically generates recommendations for increasing component reliability, thus improving the power installation safety. The FMEA tabulates the failure modes of components and how their failure affects the power installations being considered. Tn order to estimate the risks of a failures, the FMEA presents criticality estimation or risk priority number using the severity, occurrence, and detectability. The results showed that the highest components of the risk priority number among components were condenser, transformer, MCCB and LA. And In case of the criticality estimation, the potential failure modes were abnormal temperature rise, insulation oil leakage, deterioration for the transformer, overcurrent for the MCCB and operation outage fir the LA.

Combination Procedure for Seismic Correlation Coefficient in Fragility Curves of Multiple Components (다중기기 취약도곡선의 지진상관계수 조합 절차)

  • Kim, Jung Han;Kim, Si Young;Choi, In-Kil
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.24 no.3
    • /
    • pp.141-148
    • /
    • 2020
  • For the important safety system, two or more units of identical equipment or redundant components with similar function were installed to prevent abnormal failure. If the failure probability of such equipment is independent, this redundancy could increase the system safety remarkably. However, if the failure of each component is highly correlated by installing in a structure or experiencing an earthquake event, the expected redundancy effect will decrease. Therefore, the seismic correlation of the equipment should be evaluated quantitatively for the seismic probabilistic safety assessment. The correlation effect can be explained in the procedure of constructing fragility curves. In this study, several methodologies to quantify the seismic correlation in the failure probability calculation for multiple components were reviewed and two possible ways considering the realistic situation were selected. Simple examples were tested to check the applicability of these methods. The conversion method between these two methods was suggested to render the evaluation using the advantages of each method possible.

Radiation Safety Assessment of CANDU Spent Fuel Disposal System (중수로 사용후핵연료 처분시스템의 방사선 안전성 평가)

  • Kook, Dong-Hak;Cho, Dong-Keun;Choi, Heui-Joo
    • Journal of Radiation Protection and Research
    • /
    • v.35 no.4
    • /
    • pp.142-150
    • /
    • 2010
  • The purpose of this article is to evaluate the radiation safety of CANDU spent fuel disposal system by using MCNPX which was revised in order to improve disposal efficiency. This research analyzed every system components's configuration, dimension and material. Geometric modeling and dose assessment for each system components showed that dose results for inner components had high values, but final disposal system had enough margin for radiation safety.

Analysis on the Fire Accident of Vehicle Due to Damage of the Vehicle's Electrical Components (차량 전장부품 손상으로 인한 차량화재 사고사례 분석)

  • Park, Nam-Kyu;Kim, Jin-Pyo;Nam, Jung-Woo;Sa, Seung-Hun;Song, Jae-Yong
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.4
    • /
    • pp.32-38
    • /
    • 2015
  • In this paper, we analyzed the vehicle fire accidents due to damage of vehicle's electrical components, which is applied to a vehicle. In recent development of electrical components technology, approximately 40% of vehicle manufacturing parts have applied electronic circuit technology. Phenomenon such deterioration of insulating performance or electric breakdown on the vehicle's electrical components and printed circuit boards(PCBs) resulted from moisture, contamination and aging due to repetitive operations, lead to the vehicle fire. Therefore, the application of electrical components with adequate electric capacity for vehicle and usage of molding techniques using a non-combustible materials to shut off the oxygen should be applied in order to prevent vehicle fire due to damage of the electrical components and PCBs.

A Study on the construction quality infra and it's core confidency priority for enhancing construction certification system (건설공사 품질인증시스템 향상을 위한 품질인프라 및 핵심역량 도출에 관한 연구)

  • Lee, Kab-Soon;Bae, Young-Ju
    • Journal of the Korea Safety Management & Science
    • /
    • v.19 no.4
    • /
    • pp.189-208
    • /
    • 2017
  • This study is for figuring out major components of construction quality infrastructure and suggesting improvement plan by benchmarking global best practice model and analyzing gap between the model and sample practice. Based on improvement plan, researcher could derive major characters and components of construction quality infrastructure, and also about the priority among core competency components of construction quality experts. The result showed that the 'human resource' was ranked the best priority followed by 'method' 'environment', 'equipment' among major characters and components of construction quality infrastructure. Also, for core competency components of construction quality experts, 'number of years in work places' was the best priority, and the 'professional knowledge on engineering' was another priority ranked. Far from general perception on competency components, 'academic education' ranked the last. It may allude that the current education system in this country is not effective in developing competency of quality engineers. In summary, this study shows professionalism of quality engineer is the most important thing in all the components.

Performance analysis of the passive safety features of iPOWER under Fukushima-like accident conditions

  • Kang, Sang Hee;Lee, Sang Won;Kang, Hyun Gook
    • Nuclear Engineering and Technology
    • /
    • v.51 no.3
    • /
    • pp.676-682
    • /
    • 2019
  • After the Fukushima Daiichi accident, there has been an increasing preference for passive safety features in the nuclear power industry. Some passive safety systems require limited active components to trigger subsequent passive operation. Under very serious accident conditions, passive safety features could be rendered inoperable or damaged. This study evaluates (i) the performance and effectiveness of the passive safety features of iPOWER (innovative Power Reactor), and (ii) whether a severe accident condition could be reached if the passive safety systems are damaged, namely the case of heat exchanger tube rupture. Analysis results show that the reactor coolant system remains in the hot shutdown condition without operator actions or electricity for over 72 h when the passive auxiliary feedwater systems (PAFSs) are operable without damage. However, heat exchanger tube rupture in the PAFS leads to core damage after about 18 h. Such results demonstrate that, to enhance the safety of iPOWER, maintaining the integrity of the PAFS is critical, and therefore additional protections for PAFS are necessary. To improve the reliability of iPOWER, additional battery sets are necessary for the passive safety systems using limited active components for accident mitigation under such extreme circumstances.

A Study on the Safety Improvement of Lifting Purpose Chain Sling (인양용 체인슬링의 안전성 향상 방안 고찰)

  • Jin Woo Lee;Cheol Ho Han;Song Woo Lee;Young Hun Jeon;Chang Hee Lee
    • Journal of the Korean Society of Safety
    • /
    • v.38 no.4
    • /
    • pp.60-67
    • /
    • 2023
  • Various lifting slings are used in domestic industrial sites depending on the purpose, form, and environment. Each sling has its characteristics, and safe lifting work is possible when its performance meets the regulations. Therefore, this study analyzed domestic and foreign regulations and guidelines related to chain slings. It identified significant problems by analyzing the chain-sling-related disaster cases. The current status of chain slings used by various industries and the ways to improve chain sling safety were studied. The major chain sling issues were: 1) employing improper components to chains, 2) having different safety coefficients between the regulation and industrial standards, and 3) using chains unsuitable for lifting purposes. Based on these issues, the following measures were proposed to improve chain sling work safety: 1) revise the safety coefficient requirements under the Regulations on Occupational Safety and Health Standards, 2) disseminate specialized sling courses, and 3) strengthen on-site chain slings-related training. In the future, this study is expected to minimize chain use mistakes by unifying the safety coefficient related to chain slings and recognizing the importance of correctly selecting components employed in the chain.

Risk Analysis of Electrical Fire for Electric Power Installations by Event Tree Analysis (사건수목분석을 통한 수배전설비의 전기화재위험성 분석)

  • Park, Young Ho;Kim, Doo-Hyun;Kim, Sung-Chul
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.5
    • /
    • pp.16-21
    • /
    • 2016
  • The purpose of this paper is to conduct ETA on 15 components of power installations: the DS/LBS, LA, MOF, CT, PT, A/V meter, VCB, OCR, COS, PF, Transformer, Condenser(C), Grounding, Cable and Connector. To achieve that, power installations work flow and its components are categorized. Based on performance, human, environmental, management, and safety, this paper drew Initiation events (IE) and End states (ES). ETA is applied to the main functions of each component, and the end states that may occur in one initiation event are suggested. In addition, detailed classification was performed to induce various end states on the basis of the suggested initiation events. If the suggested IEs and ESs are applied on the basis of power installations event cases, it is expected to prevent the same kinds of accident and operate power installations safely.

A Study on the Software Safety Assessment of Healthcare Systems

  • Olenski, Rafal;Park, Man-Gon
    • Journal of Multimedia Information System
    • /
    • v.2 no.2
    • /
    • pp.241-248
    • /
    • 2015
  • The safety-critical software in healthcare systems needs more and more perceptive excess among human observation and computer support. It is a challenging conversion that we are fronting in confirming security in healthcare systems. Held in the center are the patients-the most important receivers of care. Patient injuries and fatalities connected to health information technologies commonly show up in the news, contrasted with tales of how health experts are being provided financial motivation to approve the products that may be generating damage. Those events are unbelievable and terrifying, however they emphasize on a crucial issue and understanding that we have to be more careful for the safety and protection of our patients.

Cause Analyses of Boiler Accident and Their Counter-plans Based on Accident Cases (사고사례에 기초한 보일러 사고의 원인분석 및 대책)

  • 윤상권;장통일;임현교
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.3
    • /
    • pp.131-140
    • /
    • 2003
  • An accident involving a boiler can result in a disaster since it handles high-pressurized steam so that it may cause an explosion. Therefore, the boiler is very susceptible to industrial accidents. This thesis aimed to develop counter-plans to prevent industrial accidents involved the boiler. At first after collecting accident cases involving boilers, a survey on the trait of them was carried out. Ant on the other hand a qualitative analysis was conducted to draw out hazardous components in the boiler itself and their inherent relative importance was assessed. Through this procedure, 'negligence of unsafe condition' was noted as the major cause for unsafe acts whereas 'fault in work procedure' for unsafe condition. In the meanwhile, results of a hazard analysis using FMEA technique ranked gas safety devices, a switch preventing gas from under-pressurization, protect relays high. In particular, it was pointed out that the water feeding and steam subsystem has more components in hazard than other subsystems. Considering these analyses results, counter-plans to improve safety management was suggested also.