
Journal of Multimedia and Information System Vol. 2, No 2, June 2015(pp. 241-248): ISSN 2383-7632(Online)
http://dx.doi.org/10.9717/JMIS.2015.2.2.241

241

I. INTRODUCTION

 The importance of software is starting to be
progressively significant, and it is in use in many critical
applications, such as avionics, transportation control
systems, health systems (which we will focus on in this
paper), engineering, power systems, and sensor networks
[1]. As we know well, safety-critical systems can cause
mishaps and hazards. Software become dangerous if it can
follow to a threat i.e. cause other mechanisms to be
harmful or if it is controlling the hazard. Software is
thought of as harmless if it is not possible or doubtful that
the software might ever develop activities that would
follow a tragic result for the system that the software is
responsible for. Cases of catastrophic activities contain
loss of physical property, physical injury, or death.
Software engineering of a safety-critical system involves a
perfect understanding of the software’s part, and
collaboration together with the system [2, 3]. All systems
need the maximum care in their design, specification,
application, process and conservation, as they might lead
to damages or death, and also as an effect in material loss.
IT technology is used in a medicine more often than
people think. A microprocessors are used to control an

insulin pump is well known. The fact that a pacemaker is
mostly a computer is less recognized. Widespread use of
information technology in surgical actions is mysterious
for ordinary people. Modern tools are making innovations
in techniques such as spinal surgery, hip replacement and
many other surgical procedures. In those above cases,
computer controlled robotic devices are changing the
surgeons old-style instruments, and providing significant
profits to patients [4].
 In this paper, we discuss about the software safety
assessment to classify and mitigate the risks related to
malfunctioning software in the medical devices of
healthcare systems.

II. SAFET-CRITICAL SOFTWARE
COMPONENTS IN HEALTHCARE

SYSTEMS

 Software-based medical devices became a serious
division of the healthcare scene. Various health devices
need to interact together with gear, associate with clinic
and laboratory information systems, and work in extreme
circumstances. The improved expectations on such
devices and their rising universality have created

A Study on the Software Safety Assessment of Healthcare Systems

Authors: Rafal Olenski1,*, Man-Gon Park2

Abstract

The safety-critical software in healthcare systems needs more and more perceptive excess among human observation and computer
support. It is a challenging conversion that we are fronting in confirming security in healthcare systems. Held in the center are the
patients—the most important receivers of care. Patient injuries and fatalities connected to health information technologies commonly show
up in the news, contrasted with tales of how health experts are being provided financial motivation to approve the products that may be
generating damage. Those events are unbelievable and terrifying, however they emphasize on a crucial issue and understanding that we
have to be more careful for the safety and protection of our patients.

Key Words: Safety-Critical Software Components, Software Validation Guidelines ISO 14971, IEC 62304, Fault Tree Analysis
Method for Safety-Critical Software Components.

Manuscript received June 18, 2015 ; Revised July 20, 2015 ; Accepted August 10, 2015. (ID No. JMIS-2005-15)
Corresponding Author(*): Rafal Olenski, Department of IT Convergence and Application Engineering, Pukyong
National University, Korea, +82-51-629-6245, rafalolenski@gmail.com.
1Department of IT Convergence and Application Engineering, Pukyong National University, Korea,
rafalolenski@gmail.com
2Department of IT Convergence and Application Engineering, Pukyong National University, Korea,
mpark@pknu.ac.kr

A Study on the Software Safety Assessment of Healthcare Systems

242

challenging design tasks for their creators. The most
important is to confirm safety. It has become more
demanding because of the instant growing complexity of
surrounded software. For the reason that software
engineering is a fundamental human process, it is not
likely or even impossible to create software without errors.
An important task for device developers is to recognize
and mitigate the hazards related with surrounding
malfunctioning software in devices. Health devices
integrate many types of features. For example,
malfunctioning electric modules, a defective software
component will have dramatic results. Though, other
different kinds of modules, classifying and calculating the
possible effects of malfunctioning software mechanisms
are additionally problematic. Because of the growth of
complexity, it results in an additional amount of
weaknesses. Another reason is that many devices share
similar mechanisms, such as controllers and pumps, those
elements have created path record. Engineers usually
deliver device developers with performance files for these
common elements. In contrast of software, it is often
patented and established by medical device developers for
a purpose in an exact device. Unfortunately, there is no
well-known path record for software components.
Therefore, the responsibility depends on a device
developers to guarantee that software-based medical
devices are harmless and efficient. To resolve such a
challenge, it demands knowledge in efficient risk
management work, understanding the software safety, and
the implementation of a risk management outlook.
 Regardless of their significant benefits, software-based
services and systems can pose hazards to patient health [5,
6]. For instance, between 2005 and 2009, the US Food and
Drug Administration got over 56,000 reports of issues
linked to the use of infusion pumps [7]. Many of the safety
matters were marked out as software defects. In the United
Kingdom, the Medicines and Healthcare Products
Regulatory Agency informed a constant growth in medical
device adverse incidents, 9099 reports in 2009 [8]. The
British Medical Journal also stated an important growth in
medical device recalls and warnings [9]. Specified by the
criticality of certain software systems, e.g. EHR,
measuring the level of which the software actions
contribute to safety hazards in healthcare services must be
an fundamental part of the medical threat valuation
process and the general clinical safety matter [10].
 These safety dangers rise in medical environments that
are centered on the connections among many different
human, technical and high-tech elements. Understanding
and adjusting the complex links between the software’s
behavior and the emergence of the medical hazards (i.e.
possible to cause escapable/unintentional harm) is a great

challenge. Talking about this challenge at the medical
level needs close relationship among different investors,
mainly clinical authorities, health experts, safety analysts
and systems and software engineers [11].
 Device producers are ethically, legally, and financially
responsible to guarantee that their development creations
do no damage. However, in spite of the huge amount
producers invest in authorizing the security of their
products, catastrophes continue to occur. For instance, the
Food and Drug Administration informed that: among 1990
and 2000 there were 200,000 pacemaker recalls because of
the software issues. In the U.S, from 1985 to 2005, there
were 30,000 fatalities accidents and 600,000 damages
caused by medical devices, 8% involved a defective
software [12].

Fig. 1. Infusion Pump

Fig. 2. Pacemaker

Journal of Multimedia and Information System Vol. 2, No 2, June 2015(pp. 241-248): ISSN 2383-7632(Online)
http://dx.doi.org/10.9717/JMIS.2015.2.2.241

243

Fig. 3. Insulin Pump [21]

III. SOFTWARE VALIDATION
GUIDELINE FOR HEALTHCARE

SYSTEMS

 The complication of the software implementation in
many clinical devices means that confirming their safety
needs complete testing with a compounding of other
methods such as design validation, implementation
validation, and remaining fault assessment. Failures in
medical devices don’t usually mark the headlines the way
airplane or train mishaps do. For patients, most likely,
medical device errors can have catastrophic results [13].
International Organization for Standardization is an
international federation of nationwide standards bodies
(ISO member groups). The work of making International
Standards is normally approved by ISO technical
committees. Each associate group involved in a subject for
which a technical committee has been established, has the
right to be represented on that committee. International
organizations, governmental and non-governmental, in
collaboration with ISO, also take part in the work. ISO
cooperates diligently with the International Electro
Technical Commission (IEC) on all issues of electro
technical standardization to have medical systems
protected. [14]
Focusing on IEC 62304, which is a worldwide standard
for medical device software life cycle development, it isn’t
connected to functional safety. As an alternative, it reports
the “framework of life cycle processes with activities and
tasks necessary for the safe design and maintenance of
medical device software” and, according to ISO 14971,
the risk management associated with those processes [16].

 For the reason that IEC 62304 is not about functional
safety, it doesn’t describe acceptable failure rates in
numbers. Compliance with standards of IEC 62304
doesn’t suggest a safety integrity level (SIL) as does, for
instance, conformity to IEC 61508, which is worthless
without one and others. Even though IEC 62304 sets out
the procedures essential to create an efficient device, it is
not well known how the assessment of those procedures is
linked to the value of the device manufactured.

Fig. 4. Functional Safety Related Standards in Medical
Devices [15].

 Act in accordance with the development processes was
defined in IEC 62304 we have to perform the essential
examination to guarantee that the new invention is safe.
First of all, engineers must start with the principle that all
software has errors, and these mistakes may lead to
disasters. Damages are the consequence of multiply
situations that begin with a wrong introduced into a design
or application. Faults may lead to errors, and errors may
lead to failures [15].
 An additional well-known issue is to postpone risk
management till device designers have finished the
design- method that minimizes risk mitigation
opportunities. ISO 14971 states that, when developers try
to minimize risks, they must follow three design rules as a
priority. Modify the design to remove threats- If applying
the first rule is impossible, follow safety measures in the
device or manufacturing route, containing the skill to
identify circumstances that might follow to the threat’s
happening. If an adoption or implementation of those two
rules is difficult, adding documentation in an operator’s

A Study on the Software Safety Assessment of Healthcare Systems

244

guidebook to clarify precautions to take if circumstances
that might lead to a hazard to occur. [14]
 Certainly, these values highlight an initial beginning to
risk management and therefore it gives more chances and
freedom for the device creator in decreasing threat in the
same time with the device progress [7].
 ISO 14971 explains a risk as a possible source of
damage—physical harm or damage to the health of people
(patients, clinicians, and third parties), property, or the
environment. The basic requirements device developers
are to classify all known and predictable threats and
measure each hazard’s severity—the amount of its
probable effects. Common threats for exact devices are a
valuable beginning. According to ISO 14971 we can
classify hazards that creators never assumed to happen.
The important standard is that if a threat can actually occur,
be sure that it will. However, we will not concentrate on
the hazard’s probability of occurrence but on the damage
that may result [17].
 Systems always include: hardware, the software, the
users, and the surroundings. Everything needs to be
thought out well during the developing of the software.
Altogether fragments of the system need to be harmless.
Theoretical or practical security begins at the system level
of quality. Security can’t be guaranteed if we just
concentrated only on software. We can create a software
without ‘bugs’ and implied several security features,
however we can’t predict how software will act with all
components in the system.
 The system safety analyses are the initial point to
classify software safety requirements essential to help to
create the software requirements specification. Such a
requests have to be delivered to the developer and attached
into the software requirements data.
 During the whole project life cycle, the system safety
analysis must be performed. The software safety
examination procedure must last to evaluate the effects of
the systems analyses to declare that modifications and
answers at the system level are combined into the software
as required. Additionally, the software safety analyses
deliver input to the system safety analyses. The software
safety analyses are an important part of the complete
system safety examination and they cannot be conducted
separately. As a result, we have four security-relevant
elements of a system development route: 1. Classifying
threats and associated safety requirements, 2. Creating the
system to face its safety requirements, 3. Examining the
system to display that it comes through its safety desires,
and 4. Proving the safety of the system by manufacturing a
safety case [18].

IV. FAULT TEE ANALYSIS
METHOD(FTA) FOR SAFETY CRITICAL

SOFTWARE COMPONENTS OF
HEALTHCARE SYSTEMS

 Device developers have to emphasize on classifying
hazards first and then recognizing failure modes that can
follow to those dangers. FTA and failure modes effect
criticality analysis are one of the best tools. ISO 14971
contains this condition: The producer will guarantee that
those conducting risk management assignments contain
individuals with knowledge and experience proper to the
work given to them.
 Fault Tree Analysis (FTA) is a logic diagram showing
the routes to an event, it is a procedure to recognize threats,
and it is covered by a complete examination to find out
what could cause it. The event under the study is called the
‘Top Event’. The ‘Top Event’ causes are diagramed using
typical logic gate symbols (AND- the output incident
happens when all input events happen at the same time.
OR -the output happening occurs when at least one of the
input happenings occur).
 Fault Tree Analysis usually take five steps. The first is
to describe the undesired event to study, the ‘Top Event’ –
states the unwanted happening that can cause risk. The
second is to understand the system. We need to describe
the events that could let the ‘Top Event’ happen. For each
event express what would cause it. Carry on to analyze the
system. The third is a creation of the fault tree– after
selecting the undesired happening and analyzed the system
to identify the causal events. Define the events and their
relationships using AND and OR gates (more complex
gates are also possible). As the fourth step, evaluate the
fault tree- look for possible improvements that can
mitigate, reduce, or eliminate the events. Classify all
probable hazards effecting in a direct or indirect way of
the system. Lastly, control the hazards identified– after
recognizing the events and hazards, determine the
methods to decrease the possibility of occurrence.
 In the case of software hazards, the common attention is
to define faults that will cause the system to fail to deliver
a system service, such as a monitoring system. Fault tree
is constructed to connect all the possible circumstances
together, to help classify the interrelationships of the
failures, which modules may cause them, and what result
there might be.
 Here is an example of a fault tree, as applied to the
insulin delivery system, a personal insulin pump for
people suffering from diabetes. It is an external device that
mimics the function of the pancreas. It uses a fixed sensor
to calculate the blood sugar level at periodic intervals and
then injects insulin to keep the blood sugar at a ‘normal’

Journal of Multimedia and Information System Vol. 2, No 2, June 2015(pp. 241-248): ISSN 2383-7632(Online)
http://dx.doi.org/10.9717/JMIS.2015.2.2.241

245

level:
 Notice that this tree is incomplete, since only the
possible software faults are illustrated on the figure 2. The
probable failures related to hardware, such as blood

monitor, low battery, or sensor failure, patient over-
exertion or carelessness, or medical staff failure are not
included in this diagram

 Fig. 5. Fault Tree Diagram of Insulin Delivery System

 The fault tree is useful tool to help with system risk
assessment tasks. Once the risks are recognised, there are
other valuations that need to take place. First, the
probability of the risk occurrence must be measured. This
is often computable, therefore numbers may be matched
based on MTBF (Mean Time between Failures), latency
effects, and other well-known objects. There may be other
immeasurable contributors to the risk probability, however,
such that these must be evaluated and estimated by the
specialists in the field. We should never make short this
process with critical systems. Lastly, the risk assessment
must contain the severity of the risk, an estimation of the
cost to the development in the happening the risk item
actually does take a place. That means all associated with
costs, containing human injury, program delays,
corruption to hardware, damage of data, etc.

 Pr (Probability of Software Failure in Insulin System)

= Pr 	x	 	x	

= [Pr 	x	 	x	Pr 	x	 Pr 	x	

=[Pr 	x	 	x	 	x Pr 	x

 [Pr 	x	 	x	

 = x	 x	 x	 x	 x	 x	 ,

if we denote that Pr(S*) = p*.

S* (An Event Cause Threats)
(Incorrect Sugar level Measured)
(Correct Dose Delivered at Wrong Time)
(Delivery System Failure)
(Sensor Failure)
(Sugar Computation Error)
(Insulin Computation Incorrect)

 (Pump Signals Incorrect)

A Study on the Software Safety Assessment of Healthcare Systems

246

, (Algorithm Error) Compare dose to be delivered
with previous dose or safe maximum doses. Reduce dose
if too high.

, (Arithmetic Error) A computation causes the

value of a variable to overflow or underflow. Maybe
include an exception handler for each type of arithmetic
error.

VI. CONCLUSIONS

 The medical device software development area is full of
procedures that software development organizations need
to conform with in order to market their products. In this
paper we have described these adjusting standards. This
paper is proposing one of the methods: Fault Tree Analysis
and discussed the principles relevant to software safety.
We focused on the standard for medical device risk
management ISO 14971:2007 which is recognize as a
compatible standard by FDA (Food and Drug
Administration). The European Union lists it as a
consistent standard to the MDD (Medical Device
Directive), IVD (In Vitro Diagnostics), and AIMD (Active
Implantable Medical Device). ISO 14971 fits perfectly for
the risk management. No matter the marketing region (US,
Canada, UE, etc.) is of valuable addition to medical
devices QMS (Quality Management System), it is the
most effective when it is integrated into companies QMS.
Furthermore, it will be essential to adopt risk management
from the initial stage until the product is done rather than
having it as an afterthought. Avoiding this could hinder the
development process as security or risk errors detected
later will require re-coding and analysis. Software
development teams need to practice secure software
development life cycle in their products to promote
software safety.
 Careful consideration of the above features and
practices will lead to the reduction of hazards of software
defects.

REFERENCES

[1] Committee on Patient Safety and Health
Information Technology of the Institute of
Medicine, Health IT and Patient Safety: Building
Safer Systems for Better Care, National Academies
Press, Washington D.C., 2012.

[2] D. Wang, F. B. Bastani, and I. L. Yen, “Automated
Aspect-Oriented Decomposition of Process-
Control Systems for Ultra-High Dependability
Assurance,” IEEE Transactions On Software

Engineering, Vol. 31, No. 9, pp. 713-732, Sep.
2005.

[3] P. V. Bhansali, “Software Safety: Current Status
and Future Direction,” ACM SIGSOFT Software
Engineering Notes, Vol. 30, No. 1, p.3, January
2005.

[4] R. R. Lutz, “Software Engineering for Safety: a
Roadmap,” Proceedings of the Conference on the
Future of Software Engineering, pp. 213-226, Jun.
2000.

[5] J. C. Knight, “Safety Critical Systems:
Challenges and Directions,” Proceedings of the
24th International Conference on Software
Engineering (ICSE), pp. 547-550, May 2002.

[6] R. H. Taylor and D. Stoianovici, “Medical
Robotics in Computer-Integrated Surgery,” IEEE
Transaction on Robotics and Automation, Vol. 19,
No. 5, pp.765-781, Oct. 2003.

[7] R. Rakitin, “Coping with defective software in
medical devices,” IEEE Computer, Vol. 39, No. 4,
pp. 40-45, 2006.

[8] R. Koppel, J. P. Metlay, A. Cohen, B. Abaluck, A.
R. Localio, S. E. Kimmel, and B. L. Strom, “Role
of computerized physician order entry systems in
facilitating medication errors,” The Journal of the
American Medical Association, Vol. 293, No. 10,
pp. 1197-1203, Mar. 2005.

[9] U.S. Department of Health and Human Services
Food and Drug Administration, “Infusion Pump
Premarket Notification,” Total Product Life Cycle,
2010.

[10] I. Habli, A. Al-Humam, T. Kelly, and L. Fahel,
Medical and Health Care products Regulatory
Agency, Adverse Incident Reports, 2009.

[11] C. Heneghan, M. Thompson, M. Billingsley,
“Medical device recalls in the UK and the device
regulation process: retrospective review of safety
notices and alerts,” BMJ Open, Vol. 1, No. 1, pp.
1-6, May 2011.

[12] Health and Social Care Information Centre,
“Clinical Risk Management: it’s Application in the
Manufacture of Health IT Systems,” Report-ISB
0129, 2013.

[13] D. Jackson, Software for Dependable Systems:
Sufficient Evidence? Washington, DC: National
Academies Press, p.23, 2007.

[14] ISO 14971:2007, Medical Devices - Application
of Risk Management to Medical Devices, ISO
Standard Catalogue, 2010.

[15] C. Hobbs, Build and Validate Safety in Medical
Device Software, Medical Electronics Design, Jan.
2012.

Journal of Multimedia and Information System Vol. 2, No 2, June 2015(pp. 241-248): ISSN 2383-7632(Online)
http://dx.doi.org/10.9717/JMIS.2015.2.2.241

247

[16] IEC 62304:2006, Medical Device Software-
Software Lifecycle Processes, ISO Standard
Catalogue, 2010.

[17] M. Thomas, “Engineering Judgment,” The 9th
Australian workshop on Safety critical systems and
software, pp. 43-47, Oct. 2004.

[18] J. McDermid, “Software Hazard and Safety
Analysis,” Formal Techniques in Real Time and
Fault Tolerant systems, Lecture Notes in
Computer Science, Vol. 2469, pp. 23-34, Oct.
2002.

AUTHORS

Rafal Olenski graduated with the
B.A. and M. A. in Physical Education
at the Gdansk University of Physical
Education and Sport, Poland in 2010.
He is a research member of the
Software Engineering and Multimedia
Information Systems Lab. as well as a
Ph. D. student of the Dept. of IT
Convergence and Application

Engineering, Graduate School, Pukyong National University,
Rep. of Korea. His research interests are in Security Analysis,
Safety Analysis, and Big Data Analysis Methods for Healthcare
Systems.

Man-Gon Park is a head professor
of the Dept. of IT Convergence and
Application Engineering, College of
Engineering, Pukyong National
University, Republic of Korea since
1981. Also he was the president and
chairman of the Korea Multimedia
Society (KMMS). He served as the
Director General and CEO of the
Colombo Plan Staff College for

Technician Education (CPSC) from 2002 to 2007, which is an
intergovernmental international organization of 29 member
governments for Human Resources Development in Asia and the
Pacific Region. He has been the visiting professor at the
Department of Computer Science, University of Liverpool, UK;
exchange professor at the Department of Electrical and
Computer Engineering, University of Kansas, USA; and visiting
scholar at the School of Computers and information science,
University of South Australia; visiting professor at the
Department of Computer Science and Engineering, University of
Colorado, Denver, USA.
He was dispatched to Mongolia and People’s Rep. of China by
KOICA on various projects as information systems consultant.
He has also embarked on consulting works and conducted

training programs in ICT on individual capacity for Korean
groups of companies, governmental and non-governmental
agencies and other institutions in Korea. His main areas of
research are software reliability engineering, software safety and
security engineering, business process reengineering, Internet
and web technology, multimedia information processing
technology, and ICT-based human resources development

A Study on the Software Safety Assessment of Healthcare Systems

248

This is blank Page

