• Title/Summary/Keyword: safe speed and distance

Search Result 76, Processing Time 0.029 seconds

Efficient Processing using Static Validity Circle for Continuous Skyline Queries (연속적인 스카이라인 질의의 정적 유효 영역을 이용한 효율적인 처리)

  • Li, Zhong-He;Park, Young-Bae
    • Journal of KIISE:Databases
    • /
    • v.33 no.6
    • /
    • pp.631-643
    • /
    • 2006
  • Moving objects in a mobile environment to change their position based on the change of time require a query with their position as a basis. Efficient Regional Decision for Continuous Skyline Queries requires objectively pre-calculating the OSR(Optimal Skyline Region) regardless of the speed and direction of the moving objects. It proposes techniques to reduce the frequency of continuous queries by choosing a VCircle(Validity Circle) as safe location which has radius of the distance to the closest region with position on the moving object at center. But, a VCircle's area varies based on the Moving object's position from first marked time of continuous query. Therefore, the frequency of its continuous query is variable and also when the object moves inside of OSR, query can re-occur frequently In this paper, we suggest a technique of selecting an IVCircle(Interior Validity Circle) in a Skyline Region as the static Safe Region using the characteristics of the OSR. An Interior IVCircle can be calculated in advance when the OSR is decided. Our experiment shows that the frequency of using IVcircle as safe region reduced than that of using VCircle as safe region by 52.55%.

Accident Models of Circular Intersection by Cause Using ZAM (ZAM을 이용한 원형교차로 원인별 사고모형 개발)

  • Na, Hee;Park, Byung-Ho
    • International Journal of Highway Engineering
    • /
    • v.14 no.2
    • /
    • pp.101-108
    • /
    • 2012
  • This study deals with the traffic accidents of circular intersections in Korea. The goal of this study is to develop the traffic accident models using ZAM. The main results are as follows. First, in the case of 'violating the operational method of intersection', ZINB(zero-inflatednegative binomial) models were analyzed to be the best fit to the data. Second, in the case of' no maintaining the safe distance', ZINB models were also analyzed to be the best fit to the data. Finally, such the common variables as traffic volume and width of circular roadway were selected as the independent variables. The more traffic volume and the less width of circulatory roadway were evaluated to make the more accidents. Such the specific variables as the number of approach lanes and speed reduction facilities were selected as the explanatory variables. The more approach lanes and the less speed reduction facilities were evaluated to give the more accidents. This study might be expected to give some implications to the accident research on the circular intersections.

A Study on the Risk Assessment by Obstacles in Ship's Passage (선박 통항로 내 장해물에 따른 위험도 평가에 관한 연구)

  • Kim, Ni-Eun;Park, Young-Soo;Park, Sang-Won;Kim, So-Ra;Lee, Myoung-Ki
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.2
    • /
    • pp.244-253
    • /
    • 2022
  • Recently, installation projects of structures such as offshore wind farms have been increasing, and the installation of such marine obstacles could affect ships that pass nearby. Therefore, the purpose of this study was to quantitatively evaluate the risk posed to passing ships due to obstacles in their passage. Hence, parameters that affected the risk were selected, and scenarios were set based on the parameters. The scenarios were evaluated through the ES model, which is a risk assessment model, and we confirmed that the risk ratio increased as the size of the obstacle increased, the safe distance from the obstacle increased, the speed of ship decreased, and the traffic volume increased. Additionally, we found that when the traffic flow direction was designated, the risk ratio was lower than that of general traffic flow. In this study, we proposed a generalization model based on the results of the performed scenarios, applied it to the Dadaepo offshore wind farm, and demonstrated that the estimation of the approximate risk ratio was possible through the generalization model. Finally, we judged that the generalization model proposed in this study could be used as a preliminary reference for the installation of marine obstacles.

An Analysis on the Prevention Effects of Forward and Chain Collision based on Vehicle-to-Vehicle Communication (차량 간 통신 기반 전방추돌 및 연쇄추돌 방지 효과 분석)

  • Jung, Sung-Dae;Kim, Tae-Oh;Lee, Sang-Sun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.10 no.4
    • /
    • pp.36-43
    • /
    • 2011
  • The forward collision of vehicles in high speed can cause a chain collisions and high fatality rate. Most of the forward collisions are caused by insufficient braking distance due to detection time of driver and safe distance. Also, accumulated detection time of driver is cause of chain collisions after the forward collision. The FVCWS prevents the forward collision by maintaining the safety distance inter-vehicle and reducing detection time of driver. However the FVCWS can cause chain collisions because the system that interacts only forward vehicle has accumulated detection time of driver. In this paper, we analyze forward and chain collisions of normal vehicles and FVCWS vehicles on static traveling scenario. And then, we analyze and compare V2V based FVCWS with them after explaining the system. The V2V FVCWS reduces detection time of driver alike FVCWS as well as remove accumulated detection time of driver by broadcasting emergence message to backward vehicles at the same time. Therefore, the system decrease possibility of forward and chain collisions. All backward normal vehicles and 3~4 backward FVCWS vehicles have possibility of forward and chain collisions in result of analysis. However V2V FVCWS vehicles almost do not chain collisions in the result.

Headway Calculation and Train Control Algorithm for Performance Improvement in Radio based Train Control System (무선통신기반 열차제어시스템에서의 운전시격 계산과 간격제어 성능개선을 위한 열차간격제어 알고리즘)

  • Oh, Sehchan;Kim, Kyunghee;Lee, Sung-Hoon;Kim, Ja-Young;Quan, Zhong-Hua
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.10
    • /
    • pp.6949-6958
    • /
    • 2015
  • Radio based train control system performs train safe interval control by receiving in realtime the position information of trains driving in the control area of the wayside system and providing onboard system in each train with updated movement authority. The performance of the train control system is evaluated to calculate the minimum operation headway, which reflects the operation characteristics and the characteristics of the train as well as the interval control performance of the train control system. In this paper, we propose the operation headway calculation for radio based train control system and a new train interval control algorithm to improve the operation headway. The proposed headway calculation defines line headway and station headway by the estimation the safety margin distance reflecting the performance of the train control system. Furthermore the proposed Enhanced Train Interval Control(ETIC) algorithm defines a new movement authority including both distance and speed, and improves the train operation headway by using braking distance occurring inevitably in the preceding train. The proposed operation headway calculation is simulated with Korean Radio-based Train Control System(KRTCS) and the simulated result is compared to improved train interval control algorithm. According to the simulated results, the proposed operation headway calculation can be used as performance indicator for radio based train control system, and the improved train control algorithm can improve the line and station headway of the conventional radio based train control system.

A Study on Design Method of Smart Device for Industrial Disaster Detection and Index Derivation for Performance Evaluation (산업재해 감지 스마트 디바이스 설계 방안 및 성능평가를 위한 지표 도출에 관한 연구)

  • Ran Hee Lee;Ki Tae Bae;Joon Hoi Choi
    • Smart Media Journal
    • /
    • v.12 no.3
    • /
    • pp.120-128
    • /
    • 2023
  • There are various ICT technologies continuously being developed to reduce damage by industrial accidents. And research is being conducted to minimize damage in case of industrial accidents by utilizing sensors, IoT, big data, machine learning and artificial intelligence. In this paper, we propose a design method for a smart device capable of multilateral communication between devices and smart repeater in the communication shaded Areas such as closed areas of industrial sites, mountains, oceans, and coal mines. The proposed device collects worker's information such as worker location and movement speed, and environmental information such as terrain, wind direction, temperature, and humidity, and secures a safe distance between workers to warn in case of a dangerous situation and is designed to be attached to a helmet. For this, we proposed functional requirements for smart devices and design methods for implementing each requirement using sensors and modules in smart device. And we derived evaluation items for performance evaluation of the smart device and proposed an evaluation environment for performance evaluation in mountainous area.

Bank Effect of a Ship Operating in a Shallow Water and Channel (천수 및 수로 운항 시 선박의 측벽효과)

  • Park, Dong-Woo;Choi, Hee-Jong;Pai, Kwang-Jun
    • Journal of Navigation and Port Research
    • /
    • v.38 no.1
    • /
    • pp.19-27
    • /
    • 2014
  • When a ship operates in a shallow water and channel, the hull sinkage and asymmetrical force generated around the ship by the influence of sea bottom and bank walls are caused collision with sea bottom, other ships or the bank itself. Especially, the shipping company and pilots navigating the area of Europe and North America with many channels are deal with it as a important matter to prevent collision. In this paper, hydrodynamic force generated between the ship and bank using the numerical analysis for the safe navigation of ship, that is, sway force and yaw moment should be presumed qualitatively. It makes a program for fluid analysis of the shallow water and bank effect. Analyses are carried out for three kind of parameter, that is, ship's speed, water depth and ship-bank distance for crude oil carriers. The numerical analysis results are compared with results of the experiments and the previous published papers.

Analysis of suitable evacuation routes through multi-agent system simulation within buildings

  • Castillo Osorio, Ever Enrique;Seo, Min Song;Yoo, Hwan Hee
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.5
    • /
    • pp.265-278
    • /
    • 2021
  • When a dangerous event arises for people inside a building and an immediate evacuation is required, it is important that suitable routes have been previously defined. These situations can happen especially when buildings are crowded, making the occupants have a very high vulnerability and can be trapped if they do not evacuate quickly and safely. However, in most cases, routes are considered based just on their proximity or short distance to the exit areas, and evacuation simulations that include more variables are not performed. This work aims to propose a methodology for building's indoor evacuation activities under the premise of processing simulation scenarios in multi-agent environments. In the methodology, importance indexes of simplified and validated geometry data from a BIM (Building Information Modeling) are considered as heuristic input data in a proposed algorithm. The algorithm is based on AP-Theta* pathfinding and collision avoidance machine learning techniques. It also includes conditioning variables such as the number of people, speed of movement as well as reaction ability of the agents that influence the evacuation times. Moreover, collision avoidance is applied between people or with objects along the route. The simulations using the proposed algorithm are tested in NetLogo for diverse scenarios, showing feasible evacuation routes and calculating evacuation times in a multi-agent environment. The experimental results are obtained by applying the method in a study case and demonstrate the level of effectiveness of the algorithm, and the influence of the conditioning variables analyzed together when performing safe evacuation routes.

A Study on Backing Up the Bus Stop Line according to the Left Turn at Intersection on the Median Bus Lane (중앙버스전용차로의 교차로 좌회전에 따른 버스 정지선 후퇴에 관한 연구)

  • oh Hoon;Lee Jin-woo;Lee Young-ihn
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.3 no.2 s.5
    • /
    • pp.75-83
    • /
    • 2004
  • July 1, 2004 Seoul Metropolitan city is operating the Median Bus Lane System on Gangnam Main Street, Seongsan-Susaek-ro (Road) and Dobong- Mia-ro (Road) as one of the systematic reorganizations in public transportation. It has been assumed that there was an improvement in the speed of bus considering that the Median Bus Lane System practiced on Cheonho-daero (Main Street) since 1996 have had 35km/h on the average. If the Median Bus Lane goes into effect, there is a problem with the left turn on the crossroad. The buses go on the existing first lane so that the left fuming cars cannot help but turn left on the second lane. In case that the Median Bus Lane is put into practice, the left turn on the crossroad should not be allowed. However, if the left turn is not permitted on the crossroads in the aforementioned main streets, neighboring residents will complain about it and there will be some difficulties in finding other detour. On the premise that the prevalent left turn on the crossroads is allowed while the Median Bus Lane is being put into practice, this study suggests the separation of a stop line between buses and other vehicles as a way of fuming left in a safe manner and a way to calculate the appropriate distance.

  • PDF

Analysis of Spatio-Temporal Parameters of Gait in Elderly by Various Walking Pathways Width (보행경로 너비에 따른 노인의 시 · 공간적 보행 분석)

  • Son, Ho-Hee;Kim, Eun-Jung
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.10
    • /
    • pp.444-451
    • /
    • 2013
  • The purpose of this study was to investigate the changes in temporospatial variables in healthy elderly and healthy adults during usual walking, narrow base walking and centerline-guided walking. Twenty healthy elderly and nineteen healthy adults were participated in this study. In each conditions, the subjects were walked on a 6m walkway at comfortable self-selected speeds under three conditions : (1) usual walking, (2) walking within a 50% of the distance between the subject's ASIS (3) walking along a centerline. GAITRite system was used for kinematic analysis to assess the temporospatial variables. There were no significant changes in healthy adults(p>.05), but walking speed, cadence, H-H base support, functional ambulation performance were significantly decreased progressively as pathway narrowed in elderly adults(p<.05). The results show that elderly people had more difficulty with walking on narrow pathway for fear of falling. This study provides data for use in basic research into safe walking and preventing falling for elderly.