• Title/Summary/Keyword: safe shutdown analysis

Search Result 46, Processing Time 0.024 seconds

Development of User Subroutine Program Considering Effect of Neutron Irradiation on Mechanical Material Behavior of Austenitic Stainless Steels (중성자 조사에 따른 오스테나이트 스테인리스 강의 기계적 재료거동 변화를 고려한 사용자 정의 보조 프로그램 개발)

  • Kim, Jong Sung;Jhung, Myung Jo;Park, Jeong Soon;Oh, Young Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.9
    • /
    • pp.1127-1132
    • /
    • 2013
  • The failure of reactor internals may have a significant effect on the safe operation and shutdown of a reactor. Various agings related to neutron irradiation occur or can potentially occur in the reactor internals owing to high neutron irradiation levels. Austenitic stainless steel, one of the principal materials constituting the reactor internals, shows different mechanical material behaviors such as tensile/creep properties and fracture toughness with neutron irradiation levels. This variation should be considered when the structural integrity of the reactor internals against agings during the design lifetime or continued operation period is evaluated. In this study, user subroutine programs considering the variation of mechanical material behaviors with neutron irradiation levels were developed. The programs were validated by testing them for various conditions.

Decay Beat Removal and Operator's Intervention During A Very Small L()CA (매우 작은 규모의 냉각재 상실 사고 동안 잔열 제거와 운전자의 개입)

  • Hee Cheon No
    • Nuclear Engineering and Technology
    • /
    • v.16 no.1
    • /
    • pp.11-17
    • /
    • 1984
  • Sample calculations were done for KORI-1 to develop a better understanding of what happens after very small LOCA ($\leq$0.05 ft$^2$). For a water-side break with the break size larger than 0.006 ft$^2$, fluid-loss through break exceeds the makeup. If the break size is larger than 0.008ft$^2$, decay heat can be completely removed through break. Based on these results, it was concluded that KORI-1 is fairly safe for the whole spectrum of sizes in very small LOCA. However, for the reactor with 900 MWe or 1200 MWe, a certain spectrum of sizes in very small LOCA should be carefully considered. In the accident sequence the transition from natural circulation to pool boiling or from pool boiling to natural circulation may be troublesome to the operator or in the safety analysis. Operator's intervention was discussed; primary pump shutoff, HPI pump shutoff, break isolation, and opening relief valve. It was proved that continuous operation of HPI pumps after shutdown will not threaten the integrity of the primary system.

  • PDF

Development of Simplified DNBR Calculation Algorithm using Model-Based Systems Engineering Methodology

  • Awad, Ibrahim Fathy;Jung, Jae Cheon
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.14 no.2
    • /
    • pp.24-32
    • /
    • 2018
  • System Complexity one of the most common cause failure of the projects, it leads to a lack of understanding about the functions of the system. Hence, the model is developed for communication and furthermore modeling help analysis, design, and understanding of the system. On the other hand, the text-based specification is useful and easy to develop but is difficult to visualize the physical composition, structure, and behaviour or data exchange of the system. Therefore, it is necessary to transform system description into a diagram which clearly depicts the behaviour of the system as well as the interaction between components. According to the International Atomic Energy Agency (IAEA) Safety Glossary, The safety system is a system important to safety, provided to ensure the safe shutdown of the reactor or the residual heat removal from the reactor core, or to limit the consequences of anticipated operational occurrences and design basis accidents. Core Protection Calculator System (CPCS) in Advanced Power Reactor 1400 (APR 1400) Nuclear Power Plant is a safety critical system. CPCS was developed using systems engineering method focusing on Departure from Nuclear Boiling Ratio (DNBR) calculation. Due to the complexity of the system, many diagrams are needed to minimize the risk of ambiguities and lack of understanding. Using Model-Based Systems Engineering (MBSE) software for modeling the DNBR algorithm were used. These diagrams then serve as the baseline of the reverse engineering process and speeding up the development process. In addition, the use of MBSE ensures that any additional information obtained from auxiliary sources can then be input into the system model, ensuring data consistency.

Seismic Analysis of the Reflective Metal Insulation for Thermal Shielding of Main Equipments of Nuclear Power Plants (원전 설비 열차폐를 위한 반사형 금속단열재의 내진 해석)

  • Kim, Seung-Hyeon;Rhee, Huinam
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.6
    • /
    • pp.166-172
    • /
    • 2016
  • This paper deals with the seismic qualification of the reflective metal insulation for thermal shielding that is installed on the outer surfaces of the main equipment of the primary coolant system of a nuclear power plant. A small-scale model of the reactor pressure vessel, which has equivalent dynamic characteristics, was designed to be tested in domestic seismic testing facilities in the future. In this study, seismic analysis of the small-scale model installed with metal insulation was performed using equivalent static analysis and response spectrum analysis. The required Response Spectrum for main equipment of the primary coolant system of APR-1400 plant were considered to establish the enveloping response spectrum, which was applied to the seismic analysis model. The results from two seismic analysis methods were compared to show the structural adequacy of the metal insulator design against a safe shutdown earthquake. This study will form the basis for the seismic testing to support the seismic qualification of the reflective metal insulator.

Dynamic Behavior of Reactor Internals under Safe Shutdown Earthquake (안전정기지진하의 원자로내부구조물 거동분석)

  • 김일곤
    • Computational Structural Engineering
    • /
    • v.7 no.3
    • /
    • pp.95-103
    • /
    • 1994
  • The safety related components in the nuclear power plant should be designed to withstand the seismic load. Among these components the integrity of reactor internals under earthquake load is important in stand points of safety and economics, because these are classified to Seismic Class I components. So far the modelling methods of reactor internals have been investigated by many authors. In this paper, the dynamic behaviour of reactor internals of Yong Gwang 1&2 nuclear power plants under SSE(Safe Shutdown Earthquake) load is analyzed by using of the simpled Global Beam Model. For this, as a first step, the characteristic analysis of reactor internal components are performed by using of the finite element code ANSYS. And the Global Beam Model for reactor internals which includes beam elements, nonlinear impact springs which have gaps in upper and lower positions, and hydrodynamical couplings which simulate the fluid-filled cylinders of reactor vessel and core barrel structures is established. And for the exciting external force the response spectrum which is applied to reactor support is converted to the time history input. With this excitation and the model the dynamic behaviour of reactor internals is obtained. As the results, the structural integrity of reactor internal components under seismic excitation is verified and the input for the detailed duel assembly series model could be obtained. And the simplicity and effectiveness of Global Beam Model and the economics of the explicit Runge-Kutta-Gills algorithm in impact problem of high frequency interface components are confirmed.

  • PDF

A Study on the System for Improving the Safety Device of the Hydrogen Fluoride ISO Tank (AHF ISO Tank의 안전성 향상을 위한 안전장치에 관한 연구)

  • Park, Sang Bae;Lee, Chang Jun
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.3
    • /
    • pp.54-62
    • /
    • 2020
  • Watching the leakage accident of the Gumi Hube Global AHF(Anhydrous fluoric Acid), I experienced how much chemical accidents affect on our society. Since then, many studies have been conducted on chemical accident in many fields. The use department wanted to find improvement plans for the process system and apply them to the field. The safety field wanted to study improvement of safety through the analysis of damage effects and apply them to emergency response to reduce damage effects. In this study, Mechanical safe devices have been applied which can respond quickly to chemical accidents occurring during the charging operation to enhance the safety of the AFH ISO Tank(Anhydrous fluoric Acid International Organization for Standardization Tank). Investigation of similar tanks confirmed that other chlorine tanks with the same working procedure as AHF ISO Tank have a mechanical safety device, EFV(Excess Flow Valve). Applicability and performance for emergency shutdown when EFV is introduced in AHF ISO Tank can be verified by comparing and examining the accident situation of Hube Global Accident and the accident in Ulsan 2018. Comparing accident cases, expected performance and applicability, It is suggested that EFV, a mechanical safety device that can reduce damage from chemical accidents to the tank and handle accidents early, should be introduced to the tank.