• Title/Summary/Keyword: sIL-R

Search Result 1,116, Processing Time 0.031 seconds

IL-6-miR-210 Suppresses Regulatory T Cell Function and Promotes Atrial Fibrosis by Targeting Foxp3

  • Chen, YingWei;Chang, GuoDong;Chen, XiaoJie;Li, YunPeng;Li, HaiYu;Cheng, Dong;Tang, Yi;Sang, HaiQiang
    • Molecules and Cells
    • /
    • v.43 no.5
    • /
    • pp.438-447
    • /
    • 2020
  • The aim of this study was to explore the role of IL-6-miR-210 in the regulation of Tregs function and atrial fibrosis in atrial fibrillation (AF). The levels of interleukin (IL)-6 and IL-10 in AF patients were detected by using ELISA. Proportions of Treg cells were detected by fluorescence activated cell sorting analysis in AF patients. The expression of Foxp3, α-SMA, collagen I and collagen III were determined by western blot. The atrial mechanocytes were authenticated by vimentin immunostaining. The expression of miR-210 was performed by quantitative real-time polymerase chain reaction (qRT-PCR). TargetScan was used to predict potential targets of miR-210. The cardiomyocyte transverse sections in AF model group were observed by H&E staining. The myocardial filaments were observed by masson staining. The level of IL-6 was highly increased while the level of IL-10 (Tregs) was significantly decreased in AF patients as compared to normal control subjects, and IL-6 suppressed Tregs function and promoted the expression of α-SMA, collagen I and collagen III. Furthermore, miR-210 regulated Tregs function by targeting Foxp3, and IL-6 promoted expression of miR-210 via regulating hypoxia inducible factor-1α (HIF-1α). IL-6-miR-210 suppresses regulatory T cell function and promotes atrial fibrosis by targeting Foxp3.

Serum Human Leukocyte Antigen-G and Soluble Interleukin 2 Receptor Levels in Acute Lymphoblastic Leukemic Pediatric Patients

  • Motawi, Tarek M.K.;Zakhary, Nadia I.;Salman, Tarek M.;Tadros, Samer A.
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.11
    • /
    • pp.5399-5403
    • /
    • 2012
  • Aims and Background: Human leukocyte antigen-G and interleukin-2 receptor play pivotal roles in the proliferation of lymphocytes, and thus generation of immune responses. Their overexpression has been evidenced in different malignant hematopoietic diseases. This study aimed to validate serum soluble human leukocyte antigen-G (sHLA-G) and serum soluble interleukin-2 receptor (sIL-2R) as an additional tool for the diagnosis and follow up of acute lymphoblastic leukemia (ALL). Subjects and Methods: Both markers were determined by ELISA in the serum of 33 ALL pediatric patients before treatment and after intensification phase of chemotherapy as well as in the serum of 14 healthy donors that were selected as a control group. Results: ALL patients showed abnormal CBC and high serum lactate dehydrogenase, which were improved after chemotherapy. Also, there was a non-significant increase in serum sHLA-G in ALL patients compared with the control group. However, after chemotherapy, sHLA-G was increased significantly compared with before treatment. On the other hand, serum sIL-2R in ALL patients was increased significantly compared with the control group. After chemotherapy, sIL-2R decreased significantly compared with before treatment. Conclusions: From these results it could be suggested that measurement of serum sHLA-G might be helpful in diagnosis of ALL, while sIL-2R might be useful in diagnosis and follow-up of ALL in pediatric patients.

The role of myokine(interleukin) and exercise for the prevention of scarcopenia and anti-inflammation (근감소 및 염증 예방을 위한 운동과 인터루킨(IL-interleukin)의 역할)

  • Byun, Yong-Hyun;Park, Woo-Young
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.2
    • /
    • pp.509-518
    • /
    • 2018
  • The purpose of this study was myokine product and role with physical activity and literature review. There is accumulating epidemiological evidence that a physically active life plays an independent role in the protection against type 2 diabetes, cardiovascular disease, colon cancer, dementia and even depression. And myokine has been regarded an important factor of exercise training and brain growth factor for the prevention of Alzheimier's disease. During exercise the release of anti-inflammatory myokine from contracting muscle controled the metabolic response, and IL-4, IL-6, IL-7, IL-10, and IL-15 controled muscle hypertrophy, myogenesis and angiogenenesis. IL-6 promoted the lipid metabolism through AMPK activation. IL-1Ra, IL-10 and sTNF-R inhibited $TNF-{\alpha}$ as the pro-inflammatory cytokine. IL-15 increased the releasing volume from contracting muscle, and promoted the anabolic factor of muscle growth. IL-7 and IL-8 activated the angiogenesis through the more activation of C-X-C receptor signal transmission.

Near $100^{\circ}C$ low temperature a-Si TFT array fabrication on 7 inch flexible PES substrates

  • Nikulin, Ivan V.;Hwang, Tae-Hyung;Jeon, Hyung-Il;Kim, Sang-Il;Roh, Nam-Seok;Shin, Seong-Sik
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.434-438
    • /
    • 2006
  • High-quality a-Si TFTs were fabricated on 7 inch plastic PES substrates at $130^{\circ}C$ and $100^{\circ}C$. It had been shown that the key factor for successful TFT fabrication on the relatively large plastic substrates is thorough control of total active layer's stress by means of deposition temperature reduction and single layer's intrinsic stress optimization.

  • PDF

Inflammatory cytokines in midbrain periaqueductal gray contribute to diabetic induced pain hypersensitivity through phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin signaling pathway

  • Guo, Mochi;Jiang, Zongming;Chen, Yonghao;Wang, Fei;Wang, Zhifeng
    • The Korean Journal of Pain
    • /
    • v.34 no.2
    • /
    • pp.176-184
    • /
    • 2021
  • Background: Diabetes-related neuropathic pain frequently occurs, and the underpinning mechanism remains elusive. The periaqueductal gray (PAG) exhibits descending inhibitory effects on central pain transmission. The current work aimed to examine whether inflammatory cytokines regulate mechanical allodynia and thermal hyperalgesia induced by diabetes through the phosphoinositide 3-kinase (PI3K)-mammalian target of rapamycin (mTOR) pathway in the PAG. Methods: Streptozotocin (STZ) was administered intraperitoneally to mimic allodynia and hyperalgesia evoked by diabetes in rats. Behavioral assays were carried out for determining mechanical pain and thermal hypersensitivity. Immunoblot and ELISA were performed to examine PAG protein amounts of interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-α (TNF-α), as well as their corresponding receptors in STZ rats, and the expression of PI3K/protein kinase B (Akt)/mTOR signaling effectors. Results: Increased PAG p-PI3K/p-Akt/p-mTOR protein amounts were observed in STZ-induced animals, a PI3K-mTOR pathway inhibition in the PAG attenuated neuropathic pain responses. Moreover, the PAG concentrations of IL-1β, IL-6, and TNF-α and their receptors (namely, IL-1R, IL-6R, and tumor necrosis factor receptor [TNFR] subtype TNFR1, respectively) were increased in the STZ rats. Additionally, inhibiting IL-1R, IL-6R, and TNFR1 ameliorated mechanical allodynia and thermal hyperalgesia in STZ rats, alongside the downregulation of PI3K-mTOR signaling. Conclusions: Overall, the current study suggests that upregulated proinflammatory cytokines and their receptors in the PAG activate PI3K-mTOR signaling, thereby producing a de-inhibition effect on descending pathways in modulating pain transmission, and eventually contributing to neuropathic pain.

Respiratory Protective Effect of Salvia plebeia R. Br. Extracts against Ambient Particulate Matter-induced Airway Inflammation (미세먼지 유도 기도염증에 대한 배암차즈기 추출물의 호흡기 보호 효과)

  • Song, Hyeongwoo;Ji, Kon Young;Kim, Bok Kyu;Yang, Won Kyung;Han, Chang Kyun;Shin, Han Jae;Park, Yang Chun;Hwang, Ji Sook;Kang, Hyung Sik;Kim, Seung Hyung
    • Korean Journal of Medicinal Crop Science
    • /
    • v.25 no.5
    • /
    • pp.269-281
    • /
    • 2017
  • Background: Small particles increase airway inflammation upon reaching the alveoli. Here, we investigated the protective or therapeutic effects of Salvia plebeia R. Br. (SP_R) extracts on airway inflammation. Methods and Results: To investigate the anti-inflammatory activity of SP_R extracts, we measured their inhibitory effect on the production of reactive oxygen species (ROS) expression of inflammatory mediators, and immune cell infiltration in MH-S alveolar macrophage cells and in the ambient particulate matter (APM)-exposed airway inflammation mice model. The SP_R extracts inhibited the production of ROS and expression of IL-4, IL-10, IL-15, and IL-17A mRNA in APM-stimulated MH-S cells. Oral administration of SP_R extracts suppressed APM-induced inflammatory symptoms, such as high alveolar wall thickness, excess collagen fibers, decreased mRNA expression of chemokines (Ccr9, Ccl5, Ccr3), inflammatory cytokines (IL-15, TNF-${\alpha}$), and IL-4 Th2 cytokine in the lung. The SP_R extracts also inhibited ROS production, granulocyte ($CD11b^+Gr-1^+$) infiltration, IL-17A, TNF-${\alpha}$, macrophage inflammatory protein (Mip-2), and chemokine (C-X-C motif) ligand 1 (Cxcl-1) production in the airway. The specific compounds in the SR-R extracts that mediate the anti-inflammatory effects were identified. Conclusions: In this study, SP_R extracts effectively inhibited airway inflammatory responses, such as ROS production and granulocyte infiltration into the airway, by regulating the expression of chemokines and inflammatory cytokines.

Investigation and Analysis of Allergy-related SNPs for Allergy Affected Students in a high school. (과학영재학교 학생들이 알러지 관련 SNP 탐색고 분석)

  • 김경원;이호경;김현근;김수영;안정훈
    • Journal of Life Science
    • /
    • v.14 no.5
    • /
    • pp.847-854
    • /
    • 2004
  • Allergy is a multi-factorial disease influenced by genetic and environmental factors. As the number of allergy-affected people is increasing in developed countries, there is an increasing interest in genetic predisposition to the allergy. A number of genes and chromosomal region have been identified to be linked to allergy including rhinitis, asthma and atopy. In order to understand the genetic background for the allergy-affected people, we investigated genetic predisposition among students enrolled in Busan Science Academy. Among 138 students, about 30% students had some allergy-related disorder including rhinitis, asthma and atopy. We analyzed several single nucleotide polymorphisms (SNPs) within two genes, Inter-leukin-4(IL-4) and Interleukin-4 receptor(IL-4R), which are involved in the induction of allergy reaction with the Th2 immunity. For 96 samples obtained from students, we analyzed 9 SNPs including -590 C/T and -34 C/T in IL-4, and I75V, Q576R, E375A, e406R, 5411L, S761P and S727A in IL-4R. From the analysis, these SNPs showed slight differences among normal and allergy-affected students, but these differences was not enough to predict the predisposition to the allergy. In contrast to previous reports, we could not find SNP(s) related with allergy. These results suggest that genetic tests recently performed in Korea widely have to be reassessed for its validity of genetic predisposition. [Supported by grants from MOST]

Inhalation of panaxadiol alleviates lung inflammation via inhibiting TNFA/TNFAR and IL7/IL7R signaling between macrophages and epithelial cells

  • Yifan Wang;Hao Wei;Zhen Song;Liqun Jiang;Mi Zhang;Xiao Lu;Wei Li;Yuqing Zhao;Lei Wu;Shuxian Li;Huijuan Shen;Qiang Shu;Yicheng Xie
    • Journal of Ginseng Research
    • /
    • v.48 no.1
    • /
    • pp.77-88
    • /
    • 2024
  • Background: Lung inflammation occurs in many lung diseases, but has limited effective therapeutics. Ginseng and its derivatives have anti-inflammatory effects, but their unstable physicochemical and metabolic properties hinder their application in the treatment. Panaxadiol (PD) is a stable saponin among ginsenosides. Inhalation administration may solve these issues, and the specific mechanism of action needs to be studied. Methods: A mouse model of lung inflammation induced by lipopolysaccharide (LPS), an in vitro macrophage inflammation model, and a coculture model of epithelial cells and macrophages were used to study the effects and mechanisms of inhalation delivery of PD. Pathology and molecular assessments were used to evaluate efficacy. Transcriptome sequencing was used to screen the mechanism and target. Finally, the efficacy and mechanism were verified in a human BALF cell model. Results: Inhaled PD reduced LPS-induced lung inflammation in mice in a dose-dependent manner, including inflammatory cell infiltration, lung tissue pathology, and inflammatory factor expression. Meanwhile, the dose of inhalation was much lower than that of intragastric administration under the same therapeutic effect, which may be related to its higher bioavailability and superior pharmacokinetic parameters. Using transcriptome analysis and verification by a coculture model of macrophage and epithelial cells, we found that PD may act by inhibiting TNFA/TNFAR and IL7/IL7R signaling to reduce macrophage inflammatory factor-induced epithelial apoptosis and promote proliferation. Conclusion: PD inhalation alleviates lung inflammation and pathology by inhibiting TNFA/TNFAR and IL7/IL7R signaling between macrophages and epithelial cells. PD may be a novel drug for the clinical treatment of lung inflammation.