• 제목/요약/키워드: s-glass fiber

검색결과 323건 처리시간 0.025초

광섬유 고속생산용 헬륨 주입식 유리섬유 냉각공정에 대한 열유동 해석 (THERMO-FLUID ANALYSIS ON THE HELIUM INJECTION COOLING OF GLASS FIBER FOR HIGH SPEED OPTICAL FIBER MANUFACTURING)

  • 오일석;김동주;곽호상;김경진
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2011년 춘계학술대회논문집
    • /
    • pp.92-95
    • /
    • 2011
  • In manufacturing optical fibers, the process starts with the glass fiber drawing from the heated and softened silica preform in the furnace, and the freshly drawn glass fiber is still at high temperature when it leaves the glass fiber drawing furnace. It is necessary to cool down the glass fiber to the ambient temperature before it then enters the fiber coating applicator, since the hot glass fiber is known to cause several technical difficulties in achieving high quality fiber coating. As the fiber drawing speed keeps increasing, a current manufacturing of optical fibers requires a dedicated cooling unit with helium gas injection. A series of three-dimensional flow and heat transfer computations are carried out to investigate the effectiveness of fiber cooling in the fiber cooling unit. The glass fiber cooling unit is simplified into the long cylindrical enclosure at which the hot glass fiber passes through at high speed, and the helium is being supplied through several injection slots of rectangular shape along the cooling unit. This study presents and discusses the effects of helium injection rates on the glass fiber cooling rates.

  • PDF

헬륨가스 주입식 유리섬유 냉각장치의 냉각성능 해석 (COMPUTATIONAL ANALYSIS ON THE COOLING PERFORMANCE OF GLASS FIBER COOLING UNIT WITH HELIUM GAS INJECTION)

  • 오일석;김동주;우마로프 알리세르;곽호상;김경진
    • 한국전산유체공학회지
    • /
    • 제16권4호
    • /
    • pp.110-115
    • /
    • 2011
  • A modern optical fiber manufacturing process requires the sufficient cooling of glass fibers freshly drawn from the heated and softened silica preform in the furnace, since the inadequately cooled glass fibers are known to cause improper polymer resin coating on the fiber surface and to adversely affect the product quality of optical fibers. In order to greatly enhance the fiber cooling effectiveness at increasingly high fiber drawing speed, it is necessary to use a dedicated glass fiber cooling unit with helium gas injection between glass fiber drawing and coating processes. The present numerical study features a series of three-dimensional flow and heat transfer computations on the cooling gas and the fast moving glass fiber to analyze the cooling performance of glass fiber cooling unit, in which the helium is supplied through the discretely located rectangular injection holes. The air entrainment into the cooling unit at the fiber inlet is also included in the computational model and it is found to be critical in determining the helium purity in the cooling gas and the cooling effectiveness on glass fiber. The effects of fiber drawing speed and helium injection rate on the helium purity decrease by air entrainment and the glass fiber cooling are also investigated and discussed.

유리섬유 단열재 제조업 근로자의 공기중 유리섬유 폭로 특성 및 평가 방법에 관한 연구 (Characterization and Evaluation of Worker s Exposure to Airborne Glass Fibers in Glass Wool Manufacturing Industry)

  • 신용철;이광용;박천재;이나루;정동인;오세민
    • 한국환경보건학회지
    • /
    • 제22권2호
    • /
    • pp.43-57
    • /
    • 1996
  • To characterize worker's exposure to glass fibers, to find the correlation between airborne total dust concentrations and fiber concentrations and to recommend an appropriate evaluation method for worker's exposure to fibrous dusts in glass wool industry, we carried out this study. Average respirable fiber levels at five factories were 0.013-0.056 f/cc, and fairly below the OSHA PEL, 1 f/cc. A factory showed the lowest airborne fiber level, 0.013 f/cc, which was different significantly from those of other factories of which average fiber concentration was 0.046 f/cc. The cutting and grinding operations of insulation products resulted in higher airborne fiber cocentrations than any other processes(p<0.05). To characterize airborne fiber dimension, fiber length and diamter were determined using phase contrast microscope. The geometric means of airborne fiber lengths were $42-105 \mu m$. One factory had airborne fibers whose length distribution(GM = $105 \mu m$) was different from those of other factories(GM = $42-50 \mu m$). The percentages of respirable fibers less thinner than 3 gm were 38.9-90.9% at four factories, and two factories of them had the higher percentages than others. The findings explain for variation of airborne fiber diameters between factories. On the other hand, between the processes were the difference of fiber-length distributions observed. The cutting and grinding operations showed shorter fiber-length distributions than the fiber forming one. However, fiber-diameter distributions or respirable fiber contents were similar in all processes. The airborne fiber concentrations and the dust concentrations had relatively weak correlation(r=0.25), thus number of fibers couldn't be expected reliably from dust amount. Fiber count is appropriate for assessing accurate exposures and health effects caused by fibrous dusts including glass fibers. Ministry of Labor have established occupational exposure limit to glass fibers as nuisiance dust, but should establish it on the basis of respirable fiber concentration to provide adequate protection for worker's health

  • PDF

광섬유 고속인출공정용 유리섬유 냉각장치 내 공기유입에 의한 내부헬륨농도 저하현상 연구 (HELIUM CONCENTRATION DECREASE DUE TO AIR ENTRAINMENT INTO GLASS FIBER COOLING UNIT IN A HIGH SPEED OPTICAL FIBER DRAWING PROCESS)

  • 김경진;김동주;곽호상;박상희;송시호
    • 한국전산유체공학회지
    • /
    • 제15권4호
    • /
    • pp.92-98
    • /
    • 2010
  • In a modern high speed drawing process of optical fibers, it is necessary to use helium as a cooling gas in a glass fiber cooling unit in order to sufficiently cool down the fast moving glass fiber freshly drawn from the heated silica preform in the furnace. Since the air is entrained unavoidably when the glass fiber passes through the cooling unit, the helium is needed to be injected constantly into the cooling unit. The present numerical study investigates and analyzes the air entrainment using an axisymmetric geometry of glass fiber cooling unit. The effects of helium injection rate and direction on the air entrainment rate are discussed in terms of helium purity of cooling gas inside the cooling unit. For a given rate of helium injection, it is found that there exists a certain drawing speed that results in sudden increase in the air entrainment rate, which leads to the decreasing helium purity and therefore the cooling performance of the glass fiber cooling unit. Also, the helium injection in aiding direction is found to be more advantageous than the injection in opposing direction.

광섬유 생산공정용 퍼니스 내의 모재 가열 및 유리섬유 인출에 대한 열전달 해석 (HEAT TRANSFER ANALYSIS ON THE PREFORM HEATING AND THE GLASS FIBER DRAWING IN A GRAPHITE FURNACE FOR OPTICAL FIBER MANUFACTURING PROCESS)

  • 김경진;김동주;곽호상
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2011년 춘계학술대회논문집
    • /
    • pp.88-91
    • /
    • 2011
  • Glass fiber drawing from a silica preform is one of the most important processes in optical fiber manufacturing. High purify silica preform of cylindrical shape is fed into the graphite furnace, and then a very thin glass fiber of 125 micron diameter is drawn from the softened and heated preform. A computational analysis is performed to investigate the heat transfer characteristics of preform heating and the glass fiber drawing in the furnace. In addition to the dominant radiative heating of preform by the heating element in the furnace, present analysis also includes the convective heat transport by the gas flowing around the preform that experiences neck-dawn profile and the freshly drawn glass fiber at high fiber drawing speed. The computational results present the effects of gas flow on the temperature of preform and glass fiber as well as the neck-down profile of preform.

  • PDF

Processability and Mechanical Characteristics of Glass Fiber and Carbon Fiber Reinforced PA6 for Reinforcement Content

  • Lee, S.B.;Cho, H.S.;Lyu, M.-Y.
    • Elastomers and Composites
    • /
    • 제50권3호
    • /
    • pp.184-188
    • /
    • 2015
  • There is a need for light weight and high stiffness characteristics in the building structure as well as aircraft and cars. So fiber reinforced plastic with the addition of reinforcing agent such as glass fiber, carbon fiber, aramid fiber is utilized in this regard. In this study, mechanical strength, flow property and part shrinkage of glass fiber and carbon fiber reinforced PA6 were examined according to reinforcement content such as 10%, 20%, and 30%, and reinforcement type. The mechanical property was measured by a tensile test with specimen fabricated by injection molding and the flow property was measured by spiral test. In addition, we measured the part shrinkage of fiber reinforced PA6 that affects part quality. As glass fiber content increases, mechanical property increased by 75.4 to 182%, and flow property decreased by 18.9 to 39.5%. And part shrinkage decreased by 52.9 to 60.8% in the flow direction, and decreased by 48.2 to 58.1% in the perpendicular to the flow direction. As carbon fiber content increases, mechanical property increased by 180 to 276%, flow property decreased by 26.8 to 42.8%, and part shrinkage decreased by 65.0 to 71.8% and 69.5 to 72.7% in the flow direction and the direction perpendicular to the flow respectively.

유리섬유 코팅사와 탄소섬유를 이용한 일방향 탄소섬유시트 제조공정이 콘크리트 보강에 미치는 영향 (Effect of Unidirectional Carbon Fiber Sheet Manufacturing Process Using Coated Glass Fiber and Carbon Fiber on Concrete Reinforcement)

  • 권지은;권선민;채시현;정예담;김종원
    • 한국염색가공학회지
    • /
    • 제34권3호
    • /
    • pp.185-196
    • /
    • 2022
  • In this study, carbon fiber and coated glass fiber are applied to warp and weft fiber in order to reduce the amount of carbon fiber used in carbon fiber fabrics, which are often used for reinforcement of building structures. A low-cost thermoplastic resin was coated on glass fibers to prepare a shape-stabilizing glass fiber. A unidirectional carbon fiber sheet was manufactured using the prepared coated glass fiber and carbon fiber. In order to identify whether it can be used for reinforcing architectural and civil structures, it was attached to a concrete specimen and its mechanical properties were analyzed. The optimum manufacturing conditions for the coated glass fiber were 0.3 mm in diameter of the coating nozzle, the coating temperature was 190 ℃, and the coating speed was 0.3 m/s. 14 mm was optimal for the weft spacing of the coated glass fiber. The flexural strength of the concrete reinforced with the manufactured unidirectional carbon fiber sheet was slightly lower than that of the concrete reinforced with carbon fiber fabric, but it was confirmed that the reinforcement effect was better when the amount of carbon fiber was considered.

GLASS FIBER의 함유량에 따른 초미세 발포 플라스틱의 강도 변화 (A Change of Strength at Microcellular Foamed Plastics as Content of Glass Fiber)

  • 김보흥;차성운;황윤동
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.335-340
    • /
    • 2001
  • We use so many plastic products in everyday. Because polymer materials have a lot of merits including low cost and easiness of forming, they are widely used in many manufacturing industries. Microcellular foaming process was developed at MIT in 1980's to save a quantity of materials and increase mechanical properties. The improvement of strength is very important factor in relation with the reduction of mass. So the first purpose of this research is to improve the strength of the microcellular foamed plastics as variation of glass-fiber's volume friction. Also the characteristic of filler such as glass-fiber was presented in a microcellular foaming process.

  • PDF

Transverse permeability measurement of a circular braided preform in liquid composite molding

  • Chae, Hee-Sook;Song, Young-Seok;Youn, Jae-Ryoun
    • Korea-Australia Rheology Journal
    • /
    • 제19권1호
    • /
    • pp.17-25
    • /
    • 2007
  • In liquid composite molding (LCM), composites are produced by impregnation of a dry preform with liquid resin. The resin flow through the preform is usually described by Darcy's law and the permeability tensor must be obtained for filling analysis. While the resin flow in the thickness direction can be neglected for thin parts, the resin flow in the transverse direction is important for thicker parts. However, the transverse permeability of the preform has not been investigated frequently. In this study, the transverse permeability was measured experimentally for five different fiber preforms. In order to verify the experimental results, the measured transverse permeability was compared with numerical results. Five different fiber mats were used in this study: glass fiber woven fabric, aramid fiber woven fabric, glass fiber random mat, glass fiber braided preform, and glass/aramid hybrid braided preform. The anisotropic braided preforms were manufactured by using a three dimensional braiding machine. The pressure was measured at the inlet and outlet positions with pressure transducers.

Combined effect of glass and carbon fiber in asphalt concrete mix using computing techniques

  • Upadhya, Ankita;Thakur, M.S.;Sharma, Nitisha;Almohammed, Fadi H.;Sihag, Parveen
    • Advances in Computational Design
    • /
    • 제7권3호
    • /
    • pp.253-279
    • /
    • 2022
  • This study investigated and predicted the Marshall stability of glass-fiber asphalt mix, carbon-fiber asphalt mix and glass-carbon-fiber asphalt (hybrid) mix by using machine learning techniques such as Artificial Neural Network (ANN), Support Vector Machine (SVM) and Random Forest(RF), The data was obtained from the experiments and the research articles. Assessment of results indicated that performance of the Artificial Neural Network (ANN) based model outperformed applied models in training and testing datasets with values of indices as; coefficient of correlation (CC) 0.8492 and 0.8234, mean absolute error (MAE) 2.0999 and 2.5408, root mean squared error (RMSE) 2.8541 and 3.3165, relative absolute error (RAE) 48.16% and 54.05%, relative squared error (RRSE) 53.14% and 57.39%, Willmott's index (WI) 0.7490 and 0.7011, Scattering index (SI) 0.4134 and 0.3702 and BIAS 0.3020 and 0.4300 for both training and testing stages respectively. The Taylor diagram also confirms that the ANN-based model outperforms the other models. Results of sensitivity analysis show that Carbon fiber has a major influence in predicting the Marshall stability. However, the carbon fiber (CF) followed by glass-carbon fiber (50GF:50CF) and the optimal combination CF + (50GF:50CF) are found to be most sensitive in predicting the Marshall stability of fibrous asphalt concrete.