• Title/Summary/Keyword: s-LDH

Search Result 384, Processing Time 0.019 seconds

The Role of Chest CT Scans in the Management of Empyema (농흉에서 전산화 단층촬영의 의의)

  • Heo, Jeong-Suk;Kwun, Oh-Yong;Sohn, Jeong-Ho;Choi, Won-Il;Hwang, Jae-Seok;Han, Seung-Beom;Jeon, Young-June;Kim, Jung-Sik
    • Tuberculosis and Respiratory Diseases
    • /
    • v.41 no.4
    • /
    • pp.397-404
    • /
    • 1994
  • Background: To decide the optimal antibiotics and application of chest tube, examination of pleural fluid is fundamental in the management of empyema. Some criteria for drainage of pleural fluid have been recommended but some controversies have been suggested. Recently, newer radiologic methods including ultrasound and computed tomography scanning, have been applied to the diagnosis and management of pleural effusions. We undertook a retrospective analysis of 30 patients with pleural effusion who had CT scans of the chest in order to apply the criteria of Light et al retrospectively to patients with loculation and to correlate the radiologic appearance of pleural effusions with pleural fluid chemistry. Method: We analyzed the records of 30 out of 147 patients with pleural effusion undergoing chest CT scans. Results: 1) Six of the pleural fluid cultures yielded gram negative organisms and three anaerobic bacterias and one Staphylococcus aureus and one non-hemolytic Streptococci. No organism was cultured in ninteen cases(63.0%). 2) The reasons for taking chest CT scans were to rule out malignancy or parenchymal lung disease(46.7%), poor response to antibiotics(40.0%), hard to aspirate pleural fluid(10.0%) and to decide the site for chest tube insertion(3.3%). 3) There was no significant correlations between ATS stages and loculation but there was a tendency to loculate in stage III. 4) There was a significant inverse relationship between the level of pH and loculation(p<0.05) but there appeared to be no relationship between pleural fluid, LDH, glucose, protein, loculation and pleural thickening. 5) In 12 out of 30, therapeutic measures were changed according to the chest CT scan findings. Conclusion: We were unable to identify any correlations between the plerual fluid chemistry, ATS stages and loculations except pH, and we suggest that tube thoracotomy should be individualized according to the clinical judgement and serial observation. All patients with empyema do not need a chest CT scan but a CT scan can provide determination of loculation, guiding and assessing therapy which should decrease morbidity and hospital stay.

  • PDF

Antioxidative Effects of Tenebrio molitor Larvae Extract Against Oxidative Stress in ARPE-19 Cells (ARPE-19 세포에서 산화적 스트레스에 대한 갈색거저리 추출물의 항산화 효과)

  • Bong Sun, Kim;Ra-Yeong, Choi;Eu-Jin, Ban;Joon Ha, Lee;In-Woo, Kim;Minchul, Seo
    • Journal of Life Science
    • /
    • v.32 no.11
    • /
    • pp.865-871
    • /
    • 2022
  • Tenebrio molitor larvae is well known as edible insect. Then, although it has been widely studied that Tenebrio molitor larvae has various bioactive functions such as antioxidant, anti-wrinkle, and anticancer. Nevertheless, antioxidant effects of Tenebrio molitor larvae water extract (TMH) has not been well described in Adult Retina Pigment Epithelial cell line (ARPE-19). In this study, we demonstrated that antioxidant effects of TMH against H2O2-induced oxidative stress in ARPE-19. Thus, we selected for our studies and performed a series of dose-response assay to determine the working concentration that lead to a consistent and high degree of cytotoxicity, which we defined as the level of H2O2 that killed 40% of the ARPE-19 cells. ARPE-19 cells were pre-treated with various concentrations of TMH (0.1 up to 2 mg/ml) before exposure to 300 µM H2O2. As we expected, TMH effectively prevented ARPE-19 cells from 300 µM H2O2-induced cell death in a dose-dependent manner. Furthermore, TMH inhibited the phosphorylation of mitogen-activated protein kinases (MAPKs) such as extracellular signal regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38. Overall, the inhibitory effects of TMH on H2O2-induced apoptosis and oxidative stress were associated with the protection cleaved caspase-3, Bax, Bcl-2, and HO-1. The TMH suppressed H2O2-induced cell membrane leakage and oxidative stress in ARPE-19 cells. Thus, these results suggest that the TMH plays an important role in antioxidant effect in ARPE-19.

Effect of Intake L-Arginine on Athletic Performance, Lactate, Lactate Dehydrogenase and Ammonia in Male College Taekwondo Kyorugi Players during an 8-Week Intensive Winter Training (남자 대학 태권도 겨루기 선수의 8주간 고강도 동계 훈련 시 L-아르기닌 섭취가 경기수행능력, 젖산, 젖산탈수소효소 및 암모니아에 미치는 영향)

  • Kyung-Hyun Park;Su-Han Koh;Tae-Kyu Kim;Seon-Young Son;Soo-Min Ha;Do-Yeon Kim
    • Journal of the Korean Applied Science and Technology
    • /
    • v.40 no.6
    • /
    • pp.1309-1321
    • /
    • 2023
  • This study was conducted by dividing L-arginine intake group (n=14) and placebo group (n=14) to investigate the effect of L-arginine intake on athletic performance, lactate, lactate dehydrogenase, and ammonia of men's college Taekwondo Kyorugi players during 8-week of intensive winter training. The L-arginine intake group consumed a total of 3 g, including 1 g for breakfast, 1 g for lunch, and 1 g for dinner, and the placebo group consumed maltodextrin in the same way. The 8-week winter training program was conducted at 70-90%HRR (heart rate reserve). Two-way repeated measures ANOVA was used for the interaction between the L-arginine intake group and the placebo group of the measured data, paired t-test was used for the difference between the periods within the group, and the difference between groups was analyzed using independent t-test. As a result, there was an interaction between groups in the average number of kicks among the performance ability through the TAAA (Taekwondo-specific aerobic anaerobic agility) test , and the main effect between groups was shown (p<.05). In addition, there was an interaction between groups and time in the kick fatigue index (p<.05). In lactate, the time-interaction were shown (p<.05) and interaction effects and inter-time main effects were observed in lactate dehydrogenase (LDH)(p<.05). In the case of ammonia, the interaction effect between the group and time was shown (p<.05). These results show that L-arginine intake can play a positive role in quickly synthesizing nitric oxide in blood vessels and expanding blood vessels to quickly remove fatigue-causing substances in the body for athletes who are easily exposed to fatigue after high-intensity training for male college Taekwondo Kyorugi players. Therefore, it is recommended to take L-arginine as a way to improve the performance of high-intensity elite Taekwondo Kyorugi players and recover from fatigue.

Inflammatory Reponse of the Lung to Hypothermia and Fluid Therapy after Hemorrhagic Shock in Rats (흰쥐에서 출혈성 쇼크 후 회복 시 저체온법 및 수액 치료에 따른 폐장의 염증성 변화)

  • Jang, Won-Chae;Beom, Min-Sun;Jeong, In-Seok;Hong, Young-Ju;Oh, Bong-Suk
    • Journal of Chest Surgery
    • /
    • v.39 no.12 s.269
    • /
    • pp.879-890
    • /
    • 2006
  • Background: The dysfunction of multiple organs is found to be caused by reactive oxygen species as a major modulator of microvascular injury after hemorrhagic shock. Hemorrhagic shock, one of many causes inducing acute lung injury, is associated with increase in alveolocapillary permeability and characterized by edema, neutrophil infiltration, and hemorrhage in the interstitial and alveolar space. Aggressive and rapid fluid resuscitation potentially might increased the risk of pulmonary dysfunction by the interstitial edema. Therefore, in order to improve the pulmonary dysfunction induced by hemorrhagic shock, the present study was attempted to investigate how to reduce the inflammatory responses and edema in lung. Material and Method: Male Sprague-Dawley rats, weight 300 to 350 gm were anesthetized with ketamine(7 mg/kg) intramuscular Hemorrhagic Shock(HS) was induced by withdrawal of 3 mL/100 g over 10 min. through right jugular vein. Mean arterial pressure was then maintained at $35{\sim}40$ mmHg by further blood withdrawal. At 60 min. after HS, the shed blood and Ringer's solution or 5% albumin was infused to restore mean carotid arterial pressure over 80 mmHg. Rats were divided into three groups according to rectal temperature level($37^{\circ}C$[normothermia] vs $33^{\circ}C$[mild hypothermia]) and resuscitation fluid(lactate Ringer's solution vs 5% albumin solution). Group I consisted of rats with the normothermia and lactate Ringer's solution infusion. Group II consisted of rats with the systemic hypothermia and lactate Ringer's solution infusion. Group III consisted of rats with the systemic hypothermia and 5% albumin solution infusion. Hemodynamic parameters(heart rate, mean carotid arterial pressure), metabolism, and pulmonary tissue damage were observed for 4 hours. Result: In all experimental groups including 6 rats in group I, totally 26 rats were alive in 3rd stage. However, bleeding volume of group I in first stage was $3.2{\pm}0.5$ mL/100 g less than those of group II($3.9{\pm}0.8$ mL/100 g) and group III($4.1{\pm}0.7$ mL/100 g). Fluid volume infused in 2nd stage was $28.6{\pm}6.0$ mL(group I), $20.6{\pm}4.0$ mL(group II) and $14.7{\pm}2.7$ mL(group III), retrospectively in which there was statistically a significance between all groups(p<0.05). Plasma potassium level was markedly elevated in comparison with other groups(II and III), whereas glucose level was obviously reduced in 2nd stage of group I. Level of interleukine-8 in group I was obviously higher than that of group II or III(p<0.05). They were $1.834{\pm}437$ pg/mL(group I), $1,006{\pm}532$ pg/mL(group II), and $764{\pm}302$ pg/mL(group III), retrospectively. In histologic score, the score of group III($1.6{\pm}0.6$) was significantly lower than that of group I($2.8{\pm}1.2$)(p<0.05). Conclusion: In pressure-controlled hemorrhagic shock model, it is suggested that hypothermia might inhibit the direct damage of ischemic tissue through reduction of basic metabolic rate in shock state compared to normothermia. It seems that hypothermia should be benefit to recovery pulmonary function by reducing replaced fluid volume, inhibiting anti-inflammatory agent(IL-8) and leukocyte infiltration in state of ischemia-reperfusion injury. However, if is considered that other changes in pulmonary damage and inflammatory responses might induce by not only kinds of fluid solutions but also hypothermia, and that the detailed evaluation should be study.