Inflammatory Reponse of the Lung to Hypothermia and Fluid Therapy after Hemorrhagic Shock in Rats

흰쥐에서 출혈성 쇼크 후 회복 시 저체온법 및 수액 치료에 따른 폐장의 염증성 변화

  • Jang, Won-Chae (Department of Thoracic and Cardiovascular Surgery, Chonnam National University, Medical School) ;
  • Beom, Min-Sun (Department of Thoracic and Cardiovascular Surgery, Chonnam National University, Medical School) ;
  • Jeong, In-Seok (Department of Thoracic and Cardiovascular Surgery, Chonnam National University, Medical School) ;
  • Hong, Young-Ju (Department of Thoracic and Cardiovascular Surgery, Chonnam National University, Medical School) ;
  • Oh, Bong-Suk (Department of Thoracic and Cardiovascular Surgery, Chonnam National University, Medical School)
  • 장원채 (전남대학교 의과대학 흉부외과학교실) ;
  • 범민선 (전남대학교 의과대학 흉부외과학교실) ;
  • 정인석 (전남대학교 의과대학 흉부외과학교실) ;
  • 홍영주 (전남대학교 의과대학 흉부외과학교실) ;
  • 오봉석 (전남대학교 의과대학 흉부외과학교실)
  • Published : 2006.12.05

Abstract

Background: The dysfunction of multiple organs is found to be caused by reactive oxygen species as a major modulator of microvascular injury after hemorrhagic shock. Hemorrhagic shock, one of many causes inducing acute lung injury, is associated with increase in alveolocapillary permeability and characterized by edema, neutrophil infiltration, and hemorrhage in the interstitial and alveolar space. Aggressive and rapid fluid resuscitation potentially might increased the risk of pulmonary dysfunction by the interstitial edema. Therefore, in order to improve the pulmonary dysfunction induced by hemorrhagic shock, the present study was attempted to investigate how to reduce the inflammatory responses and edema in lung. Material and Method: Male Sprague-Dawley rats, weight 300 to 350 gm were anesthetized with ketamine(7 mg/kg) intramuscular Hemorrhagic Shock(HS) was induced by withdrawal of 3 mL/100 g over 10 min. through right jugular vein. Mean arterial pressure was then maintained at $35{\sim}40$ mmHg by further blood withdrawal. At 60 min. after HS, the shed blood and Ringer's solution or 5% albumin was infused to restore mean carotid arterial pressure over 80 mmHg. Rats were divided into three groups according to rectal temperature level($37^{\circ}C$[normothermia] vs $33^{\circ}C$[mild hypothermia]) and resuscitation fluid(lactate Ringer's solution vs 5% albumin solution). Group I consisted of rats with the normothermia and lactate Ringer's solution infusion. Group II consisted of rats with the systemic hypothermia and lactate Ringer's solution infusion. Group III consisted of rats with the systemic hypothermia and 5% albumin solution infusion. Hemodynamic parameters(heart rate, mean carotid arterial pressure), metabolism, and pulmonary tissue damage were observed for 4 hours. Result: In all experimental groups including 6 rats in group I, totally 26 rats were alive in 3rd stage. However, bleeding volume of group I in first stage was $3.2{\pm}0.5$ mL/100 g less than those of group II($3.9{\pm}0.8$ mL/100 g) and group III($4.1{\pm}0.7$ mL/100 g). Fluid volume infused in 2nd stage was $28.6{\pm}6.0$ mL(group I), $20.6{\pm}4.0$ mL(group II) and $14.7{\pm}2.7$ mL(group III), retrospectively in which there was statistically a significance between all groups(p<0.05). Plasma potassium level was markedly elevated in comparison with other groups(II and III), whereas glucose level was obviously reduced in 2nd stage of group I. Level of interleukine-8 in group I was obviously higher than that of group II or III(p<0.05). They were $1.834{\pm}437$ pg/mL(group I), $1,006{\pm}532$ pg/mL(group II), and $764{\pm}302$ pg/mL(group III), retrospectively. In histologic score, the score of group III($1.6{\pm}0.6$) was significantly lower than that of group I($2.8{\pm}1.2$)(p<0.05). Conclusion: In pressure-controlled hemorrhagic shock model, it is suggested that hypothermia might inhibit the direct damage of ischemic tissue through reduction of basic metabolic rate in shock state compared to normothermia. It seems that hypothermia should be benefit to recovery pulmonary function by reducing replaced fluid volume, inhibiting anti-inflammatory agent(IL-8) and leukocyte infiltration in state of ischemia-reperfusion injury. However, if is considered that other changes in pulmonary damage and inflammatory responses might induce by not only kinds of fluid solutions but also hypothermia, and that the detailed evaluation should be study.

배경: 출혈성 쇼크는 허혈 시 발생하는 산소산화물 등에 의해 체내에 여러 가지 염증반응을 일으킴으로써 각 장기의 기능부전을 초래한다. 특히 폐장은 허혈 시 조기에 폐포 세포의 투과성이 증가하여 부종, 염증세포의 침윤 및 출혈 등이 일어나 호흡부전증을 초래한다. 또한 출혈성 쇼크 시 기본적으로 시행하는 수액 요법은 간질의 부종을 일으켜 폐장의 기능을 감소시킬 수 있는 위험 요소이다. 따라서 출혈성 쇼크 후 폐장의 기능 저하를 예방하기 위해서는 폐장의 염증 반응을 줄이고 폐부종을 최소화시키는 노력이 필요하다. 대상 및 방법: $300{\sim}350$ gm 정도의 수컷 흰쥐를 이용하여 경정맥을 통해 약 3 mL/100 g의 혈액을 제거하여 평균 경동맥압 $35{\sim}40$ mmHg의 출혈성 쇼크 상태(I단계, 60분)를 유도하고 유지한 후, 제거한 혈액을 재주입하고 수액요법을 실시하여 평균 경동맥압을 80 mmHg로 유지하는 소생 상태(II 단계, 60분)를 시행한 후 약 3시간 정도 경과를 관찰(III 단계)하였다. 실험동물은 3군으로 나누어 실험하였으며 I군(n=10)은 I 단계 시 직장체온을 $37{\pm}1^{\circ}C$로 유지하고 II 단계에서 린저액을 이용하여 수액요법을 실시하였다. II 군(n=10)은 I 단계 시 직장체온을 $33{\pm}1^{\circ}C$로 유지하고 II단계에서 린저액을 이용한 수액요법을 실시하였다. III군은 I단계 시 $33{\pm}1^{\circ}C$로 체온을 유지하였고 II 단계에서 5% 알부민액을 이용하여 수액요법을 실시하였다. 각 군 모두 실험 전, I, II, III 단계 후반에 혈류역학적 인자(심박수, 평균 경동맥압), 동맥혈 가스 분석, 혈청내 포도당과 LDH, I, II단계의 투여 수액양, 기관지-폐포 세척액의 Interleukin(IL)-8을 측정하였고, 조직검사를 통해 염증반응의 정도를 조직학적 점수로 평가하였다. 결과: I군의 4예를 제외한 26예가 III단계까지 생존하였다. 각 군 간의 평균 경동맥압의 유의한 차이는 없었다. 그러나 실험 1단계에서의 채혈량은 I군은 $3.2{\pm}0.5$ mL/100 g으로 II, III 군의 $3.9{\pm}0.8$ mL/100 g, $4.1{\pm}0.7$ mL/100 g에 비해 각각 유의하게 적었다(p< 0.05). II 단계에서의 투여 수액량은 I 군 $28.6{\pm}6.0$ mL, II 군 $20.6{\pm}4.0$ mL, III 군 $14.7{\pm}2.7$ mL로 각 군 간에 통계적인 유의성이 있었다(p<0.05). 혈청내 칼륨 농도는 I군에서 II군에 비해 소생술 후 의의 있게 높았으며(p<0.05), 포도당 농도는 II단계의 I군에서 타군과 비교하여 현저히 낮았다(p<0.05). IL-8은 I 군 $1,834{\pm}437$ pg/mL, II 군 $1,006{\pm}532$ pg/mL, III군 $764{\pm}302$ pg/mL로 I 군에서 II 및 III군과 비교하여 통계적으로 유의하게 높았으며(p<0.05), 폐조직의 조직검사를 통해 평가한 염증세포 분포 점수에서 III 군이 $1.6{\pm}0.6$으로 I 군 $2.8{\pm}1.2$에 비해 통계적으로 유의하게 낮았다(p<0.05). 결론: 압력 조절형 출혈성 쇼크 모델에서 시행한 저체온법은 정상체온을 유지하고 있는 군에 비해 쇼크 상태에서의 기초대사량을 줄여줌으로써 허혈에 의한 조직의 직접적인 손상을 억제할 수 있으리라 생각된다. 또한 저체온법은 수액의 사용량을 줄여주고 IL-8등의 싸이토카인 분비를 억제시키며 백혈구의 침윤을 줄여줌으로써 쇼크 후 폐장의 기능 회복에 도움을 준다. 그러나 저체온법을 시행한 군에서도 투여하는 수액을 달리함으로써 폐장의 염증변화나 손상이 차이를 나타낼 수 있을 것으로 생각되며 이에 대한 세심한 연구가 있어야 할 것이다.

Keywords

References

  1. Hassoun HH, Mercer DW, Mooly FG, Weisbrodt NW, Moore FA. Postinjury multiple organ failure: the role of the gut. Shock 2001;15:1-10 https://doi.org/10.1097/00024382-200115010-00001
  2. Bickell WH, Wall MJ, Pepe PE, et al. Immediate versus delayed fluid resuscitation for hypotensive patients with penetrating torso injuries. N Engl J Med 1994;331:1105-12 https://doi.org/10.1056/NEJM199410273311701
  3. Wu X, Stezoski J, Safar P, et al. Mild hypothermia during hemorrhagic shock in rats improves survival without significant effects on inflammatory responses. Crit Care Med 2003; 31:195-202 https://doi.org/10.1097/00003246-200301000-00030
  4. Attuwaybi B, Kozar RA, Rosemary A, et al. Hypertonic saline prevents inflammation, injury, and impaired intestinal transit after gut ischemia/reperfusion by inducing heme oxygenase 1 enzyme. J Trauma 2004;56:749-59 https://doi.org/10.1097/01.TA.0000119686.33487.65
  5. Crippen D, Safar P, Porter L, Zona J. Improved survival of hemorrhagic shock with oxygen and hypothermia in rats. Resuscitation 1991;21:271-81 https://doi.org/10.1016/0300-9572(91)90052-Z
  6. Varicoda EY, Poli de Figueiredo LF, Cruz RJ Jr, Silva LE, Rocha e silva M. Blood loss after fluid resuscitation with isotonic or hypertonic saline for the initial treatment of uncontrolled hemorrhage induced by spleen rupture. J Trauma 2003;55:112-7 https://doi.org/10.1097/01.TA.0000074350.61500.E0
  7. Wada CE, Grady J, Kramer GC, Younes RN, Gehlsen K, Holcroft JW. Individual cohort analysis of the efficacy of hypertonic saline/dextran in patients with traumatic brain injury and hypotension. J Trauma 1997;42:561-5
  8. Tegtmeyer K. Shock. University of Minnesota Pediatric Critical Care Medicine 1998:1-90
  9. Meyers C. Fluid resuscitation. Eur J Emerg Med 1997;4: 224-32 https://doi.org/10.1097/00063110-199712000-00009
  10. Childs EW, Udobi KF, Wood JA, et al. In vivo visualization of reactive oxidants and leukocyte-endothelial adherence following hemorrhagic shock. Shock 2002;18:423-7 https://doi.org/10.1097/00024382-200211000-00006
  11. Slikker W III, Desai VG, Duhart H, Feuers R, Imam SZ. Hypothermia enhances bcl-2 expression and protects against oxidative stress-induced cell death in chinese hamster ovary cells. Free Radic Biol med 2001;31:405-11 https://doi.org/10.1016/S0891-5849(01)00593-7
  12. Zar HA, Lancaster JR Jr. Mild hypothermia protects against postischemic hepatic endothelial injury and decreases the formation of reactive oxygen species. Redox Rep 2000;5: 303-10 https://doi.org/10.1179/135100000101535852
  13. Yoshioka T, Shires GT, Fantini GA. Hypothermia relieves oxidative stress in reperfused skeletal muscle following partial ischemia. J Surg Res 1992;53:408-16 https://doi.org/10.1016/0022-4804(92)90069-C
  14. Baiping L, Xiujuan T, Hongwei C, et al. Effect of moderate hypothermia on lipid peroxidation in canine brain tissue after cardiac arrest and resuscitation. Stroke 1994;25:147-51 https://doi.org/10.1161/01.STR.25.1.147
  15. Prueckner S, Safar P, Kentner R, Stezoski J, Tisherman SA. Mild hypothermia increases survival from severe pressure- controlled hemorrhagic shock in rats. J Trauma 2001;50: 253-62 https://doi.org/10.1097/00005373-200102000-00010
  16. Jarrar D, Chaudry IH, Wang P. Organ dysfunction following hemorrhage and sepsis: mechanism and therapeutic approaches. Int J Med 1999;4:575-83
  17. Grisham MB, Hernandez LA, Granger DN. Xanthine oxidase and neutrophil infiltration in intestinal ischemia. Am J Physiol 1986;251:G56-7
  18. Razavi HM, Werhun R, Scott JA, et al. Effects of inhaled nitric oxide in a mouse model of sepsis-induced acute lung injury. Crit Care Med 2002;30:868-73 https://doi.org/10.1097/00003246-200204000-00026
  19. Barroso-Aranda J, Schmid-Schonbein GW, Zweifach BW, et al. Granulocytes and no-reflow phenomenon in irreversible hemorrhagic shock. Circ Res 1988;63:437-47 https://doi.org/10.1161/01.RES.63.2.437
  20. Meng ZH, Dyer K, Billiar TR, et al. Distinct effects of systemic infusion of G-CSF vs. IL-6 on lung and liver inflammation and injury in hemorrhagic shock. Shock 2000; 14:41-8 https://doi.org/10.1097/00024382-200014010-00008
  21. Shahani R, Marshall JG, Rubin BB, et al. Role of TNF-alpha in myocardial dysfunction after hemorrhagic shock and lower-torso ischemia. Am J Physiol Heart Circ Physiol 2000;278:H942-50 https://doi.org/10.1152/ajpcell.2000.278.5.C942
  22. Nakamura H, Ishizaka A, Sawafuji M, et al. Elevated levels of interleukin-8 and leukotriene B4 in pulmonary edema fluid of a patient with reexpansion pulmonary edema. Am J Respir Crit Care Med 1994;149:1037-40 https://doi.org/10.1164/ajrccm.149.4.8143038
  23. Patt A, McCroskey BL, Moore EE. Hypothermia-induced coagulopathies in trauma. Surg Clin North Am 1988;68: 775-85 https://doi.org/10.1016/S0039-6109(16)44585-8
  24. Jurkovich GJ, Greiser WB, Luterman, et al. Hypothermia in trauma victims: an ominous predictor of survival. J Trauma 1987;27:1019-24 https://doi.org/10.1097/00005373-198709000-00011
  25. Gentilello LM, Jurkovich GJ, Stark MS, Hassantash SA. Is hypothermia in the victim of major trauma protective or harmful? A randomized, prospective study. Ann Surg 1997; 226:439-47 https://doi.org/10.1097/00000658-199710000-00005
  26. Mize J Koziol-McLain J, Lowenstein SR. The forgotten vital sign: temperature patterns and associations in 642 trauma patients at an urban level I trauma center. J Emerg Nurs 1993;19:303-8
  27. Rupp SM, Severinghaus JW. Hypothermia. In: Miller RD. Anesthesia. 2nd ed. New York: Churchill Livingstone. 1986; 1995-2002
  28. Laborit H, Huguenard P. Practice of hibernation therapy in surgery and medicine (French). 1st ed. Paris: Masson. 1954
  29. Morrow JD, Awad JA, Boss HJ, et al. Non-cyclooxygenases- derived prostanoids (F2-isoprostanes) are formed in sity on phospholipids. Proc Natl Acad Sci USA 1992;89:10721-25
  30. Vacchiano CA, Temple GE. Role of nonenzymatically generated prostanoid, 8-iso-PGF2 alpha, in pulmonary oxygen toxicity. J Appl Physiol 1994;77:2912-7 https://doi.org/10.1152/jappl.1994.77.6.2912