• 제목/요약/키워드: runoff depth

검색결과 187건 처리시간 0.033초

모악산도립공원 등산로의 환경훼손 실태 및 이용영향에 관한 조사연구 (Study on Environmental Deteriorations of Trail and Use Impacts in Moaksan Provincial Park)

  • 김세천;박종민
    • 한국조경학회지
    • /
    • 제25권4호
    • /
    • pp.39-50
    • /
    • 1998
  • The object of this study was to examine and analyze the environmental deterioration of three major trails and around peak area of Moaksan Provincial park in 1996. Trails are mostly made up at ridgeline and the slope of them is gentle. Mean trail width is 3.6m, and total length of branch trails is 982m in survey area. The environmental deterioration is derived from trail extension. Maximum eroded depth and cross-section area loss are 89cm and 14,050cm2 respectively, and gully erosion type appears at many sites. The environmental deterioration of trails is very heavy at the sections from Khui to Moaksan peak and from Moakchong to ascent part around the peak. The entire width, branch trail, maximum depth, cross-sectional area loss and surface roughness, as the indexes of trail conditions, are significantly greater at the more heavily used trails. Amount of erosion is influenced by eroded depth, longitudinal slope, runoff influence and entire width in descending order as well as the amount of use. Safety and protection facilities on the trail such as stone and soil stairs, rope handrail, stone channel and soil ditch work are built, but they are very deficient. Bared lands about 4,900m2 and fill slopes are caused and formed by recreation activities and constructions around peak area. It is required to carry the recess system and to conserve and rehabilitate the destroyed trail sites and bare fill slopes as soon as possible, before the environmental deterioration becomes critical because of increased used amount in consequence of construction of recreation parks.

  • PDF

자연하안조성을 위한 SWAT-K 모의치 기반 유황 분석 (Analysis of Flow Duration Based on SWAT-K Simulation for Construction of Natural Riparian)

  • 김남원;이정우;정일문;김지태
    • 한국환경과학회지
    • /
    • 제20권11호
    • /
    • pp.1457-1464
    • /
    • 2011
  • In this study, the method of estimating hydrologic information (water depth, submerged period etc.) on the proper selection of construction point and scale as well as vegetation type suggested for the design of natural riparian rehabilitation structure. Long-term comprehensive watershed model SWAT-K(Korea) was applied to this purpose. Flow duration analysis was conducted to analyze the hydrologic characteristics of Pyungchang watershed at which the 'bangtul' construction method was tested. For this purpose 20 years (1989-2008) rainfall runoff analysis was carried out. Based on the simulated daily streamflow data, flow duration curve was made to analyze the flow characteristics, and the water depth hydrograph was made to analyze the water depth distribution at the cross section. Finally, the information for the selection of proper vegetation according to the submerged period is suggested.

빗물저장조에서 입자의 제거특성 및 운전과 설계시 고려사항 (Particle Removal in a Rainwater Storage Tank, and Suggestions for Operation & Design)

  • 문정수;유형근;한무영
    • 상하수도학회지
    • /
    • 제21권1호
    • /
    • pp.131-138
    • /
    • 2007
  • A rainwater utilization facility consists of its catchment area, treatment facility, storage tank, supply facility and pipes in general. The rainwater storage tank which occupies the largest area of the facility has been usually considered quantitatively for determining the storage capacity. Hence, there is little information on water quality improvement by sedimentation in a rainwater storage tank in operation. In this study, we measured the rainwater quality in a rainwater storage tank in operation during late spring and summer, and showed water quality improvement of turbidity removal of 25~46% by sedimentation in a rainwater storage tank under a fixed water level without inflow and outflow after runoff ceased. It is necessary to have a considerable distance between the inlet and outlet of the tank and, if possible, it is recommended that the design should allow for an effective water depth of over 3 m and supply rainwater near the water surface. The operation method which increases the retention time by stopping rainwater supply for insuring low turbidity is recommended when the turbidity of rainwater runoff is high. And also more efficient operation and maintenance of the rainwater utilization facility is expected through the tailored design and operation of the facility considering particle removal and behavior.

농촌유역 비점오염원처리를 위한 적정 인공습지 규모결정에 관한 연구(지역환경 \circled1) (A Study of Design Conditions for Decision Area of Constructed Wetland to treat Nonpoint Source Pollution from Agricultural Area)

  • 장정렬;박종민;권순국;윤경섭
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 2000년도 학술발표회 발표논문집
    • /
    • pp.490-499
    • /
    • 2000
  • Several studies on development of water quality treatment systems by wetlands are on going because of their benefits of low construction cost and high efficiency of waste water treatment. The objectives of this study were to review the necessary contents of survey and design factors for constructing constructed wetlands and to examine the required wetland area to treat non-point source pollution through case studies. The measurement of water quality and quantity in precipitation period is needed to analyse the inflow characteristics of the non-point pollution and to determine the amount of design flow. The design inflow for constructing constructed wetland was determined to the total runoff from 30mm of daily rainfall in the AMC(III) condition of the SCS method and is similar 70% of the annual mean runoff. The natural type wetland system with 0.1m of water depth and 5 hours of detention time was applied. From the results of the case studies, 70% of inflow could be treated and 1∼3% of wetland area of the total basin is needed.

  • PDF

기후변화에 따른 홍수기 논의 저류능 변화 분석 (Impact of Climate Change on Paddy Water Storage During Storm Periods)

  • 박근애;박종윤;신형진;박민지;김성준
    • 한국농공학회논문집
    • /
    • 제52권6호
    • /
    • pp.27-37
    • /
    • 2010
  • The effect of potential future climate change on the storage rate of paddy field during storm periods (June - September) was assessed using the daily paddy water balance model. The CCCma CGCM2 data by SRES (special report on emissions scenarios) A2 and B2 scenarios of the IPCC (intergovernmental panel on climate change) was used to assess the future potential climate change. The future weather data for the year 2020s, 2050s and 2080s was downscaled by Change Factor method through bias-correction using 30 years weather data. The future (2020s, 2050s and 2080s) rainfall, storage and irrigation of paddy field, runoff in paddy levee and ponding depth were analyzed for the A2 and B2 climate change scenarios based on a base year (2005). The future irrigation change of paddy field was projected to increase by decrease in rainfall. So, runoff change in paddy levee was decrease slightly, future storage change of paddy was projected to increase.

Assessing the Suitability of Satellite Precipitation Products for Flood Modeling in the Tonle Sap Lake Basin, Cambodia

  • Oudom Satia Huong;Xuan-Hien Le;Giha Lee
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2023년도 학술발표회
    • /
    • pp.176-176
    • /
    • 2023
  • The Tonle Sap is the richest and diverseness of freshwater ecosystem in Southeast Asia, receiving nurturing water flows from the Mekong and its immediate basin. In addition, the rapid development in the Tonle Sap Lake (TSL) Basin, and flood inundation may threaten the natural diversities and characteristics. The impacts of flood inundation in 11 sub-basins contributing to the Tonle Sap Lake were assessed using the Rainfall-Runoff-Inundation (RRI) model to quantify the potential magnitude and extent of the flooding. The RRI model is set up by using gauged rainfall data to simulate the information of river discharge and flood inundation of huge possible flood events. Moreover, two satellite precipitation products (SPPs), CHIRPS and GSMaP, within respectively spatial resolutions of 0.05° and 0.1°, are utilized as an input for the RRI model to simulate river discharge, flood depth, and flood extent for the great TSL Basin of Cambodia. This study used statistical indicators such as NSE, PBIAS, RSR, and R2 as crucial indices to evaluate the performance of the RRI model. Therefore, the findings of this study could provide promising guidance in hydrological modeling and the significant implications for flood risk management and disaster preparedness in the region.

  • PDF

Study on the rainwater recharge model using the groundwater variation and numerical solution of quasi-three dimensional two-phase groundwater flow

  • Tsutsumi, Atsushi;Jinno, Kenji;Mori, Makito;Momii, Kazuro
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2002년도 학술발표회 논문집(II)
    • /
    • pp.1034-1040
    • /
    • 2002
  • A rainwater recharge model, which is combined with the quasi-three dimensional unconfined groundwater flow, is proposed in the present paper. The water budget in the catchments of the planned new campus of Kyushu University is evaluated by the present method that calculates both the surface runoff and groundwater flow simultaneously. The results obtained in the present study reveal that the calculated monthly and annual runoff discharges agree reasonably well with the observed discharge. Combining the rainwater recharge model, the two-phase groundwater flow equation is numerically solved f3r the entire area including the low land where the salt water intrusion is observed. The calculated depth of the salt-fresh interface agrees reasonably well with the observed ones at several cross sections. On the other hand, however, it is found that the calculated water budget remains uncertain because of lack of information on the accurate potential evapotranspiration including rainfall interception. In conclusion, however, it is found that the proposed method is applicable for the areas where the horizontal flow is dominant and the interface is assumed to be sharp.

  • PDF

토양-식생-대기 이송모형내의 육지수문모의 개선 (Improvements to the Terrestrial Hydrologic Scheme in a Soil-Vegetation-Atmosphere Transfer Model)

  • 최현일;지홍기;김응석
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2009년도 학술발표회 초록집
    • /
    • pp.529-534
    • /
    • 2009
  • Climate models, both global and regional, have increased in sophistication and are being run at increasingly higher resolutions. The Land Surface Models (LSMs) coupled to these climate models have evolved from simple bucket models to sophisticated Soil-Vegetation-Atmosphere Transfer (SVAT) schemes needed to support complex linkages and processes. However, some underpinnings of terrestrial hydrologic parameterizations so crucial in the predictions of surface water and energy fluxes cause model errors that often manifest as non-linear drifts in the dynamic response of land surface processes. This requires the improved parameterizations of key processes for the terrestrial hydrologic scheme to improve the model predictability in surface water and energy fluxes. The Common Land Model (CLM), one of state-of-the-art LSMs, is the land component of the Community Climate System Model (CCSM). However, CLM also has energy and water biases resulting from deficiencies in some parameterizations related to hydrological processes. This research presents the implementation of a selected set of parameterizations and their effects on the runoff prediction. The modifications consist of new parameterizations for soil hydraulic conductivity, water table depth, frozen soil, soil water availability, and topographically controlled baseflow. The results from a set of offline simulations are compared with observed data to assess the performance of the new model. It is expected that the advanced terrestrial hydrologic scheme coupled to the current CLM can improve model predictability for better prediction of runoff that has a large impact on the surface water and energy balance crucial to climate variability and change studies.

  • PDF

우수유출 모형을 이용한 합류식하수관로시스템의 월류량, 월류빈도 산정 기준 결정 연구 (Criteria for calculation of CSO volume and frequency using rainfall-runoff model)

  • 이건영;나용운;류재나;오재일
    • 상하수도학회지
    • /
    • 제27권3호
    • /
    • pp.313-324
    • /
    • 2013
  • It is widely known that untreated Combined Sewer Overflows (CSOs) that directly discharged from receiving water have a negative impact. Recent concerns on the CSO problem have produced several large scale constructions of treatment facilities, but the facilities are normally designed under empirical design criteria. In this study, several criteria for defining CSOs (e.g. determination of effective rainfall, sampling time, minimum duration of data used for rainfall-runoff simulation and so on) were investigated. Then this study suggested a standard methodology for the CSO calculation and support formalized standard on the design criteria for CSO facilities. Criteria decided for an effective rainfall was over 0.5 mm of total rainfall depth and at least 4 hours should be exist between two different events. An Antecedent dry weather period prior to storm event to satisfy the effective rainfall criteria was over 3 days. Sampling time for the rainfall-runoff model simulation was suggested as 1 hour. A duration of long-term simulation CSO overflow and frequency calculation should be at least recent 10 year data. A Management plan for the CSOs should be established under a phase-in of the plan. That should reflect site-specific conditions of different catchments, and formalized criteria for defining CSOs should be used to examine the management plans.

도시 유역 아파트 단지내 소하천의 홍수특성 분석 (Analysis of Flood Characteristics for A Small Stream in Apartment Complex of Urban Watershed)

  • 곽재원;안경수;박두호;김형수
    • 한국습지학회지
    • /
    • 제9권3호
    • /
    • pp.25-34
    • /
    • 2007
  • 본 연구는 도심지 유역인 경기도 부천 여월동 단지 내의 도시하천에 대해서 유출 및 홍수 특성을 분석하였다. 해당 유역의 하천은 차집 관로에 의한 생활하수와 흐름의 차단으로 인하여 평상시에는 매우 적은 유량만이 흐르고 있으나, 홍수 시에는 상대적으로 높은 홍수위로 인해 홍수 피해의 위험성을 보이고 있다. 홍수에 대한 안전성을 확인하기 위하여 유출 해석 모형을 적용하고, 또한 해당 유역에 대해 구축된 GIS 자료 및 하천 단면과 HEC-RAS를 이용, 홍수위를 예측하여 이를 바탕으로 해당 하천의 치수 안정성을 검토하였다. 검토 결과 다목적 소하천을 목적으로 설치된 하천 구조물로 인하여 홍수 피해 발생 위험이 있었으며, 하천 안정성에 대한 불안요소를 포함하고 있었다. 이러한 단지내 소규모의 도시유역에 대한 홍수 유출 해석에서는 홍수 유출 외에도 구조물에 의한 배수위 변동과 유속 등과 같은 여러 위험 요인에 대하여 함께 고려해야 할 것으로 판단된다.

  • PDF