• Title/Summary/Keyword: runoff characteristics.

Search Result 955, Processing Time 0.024 seconds

Runoff Characteristics of the Livestock Manure as Fertilizer at Farmland (가축분뇨 비료의 농지 유출 특성)

  • Oa, Seong-Wook
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.5
    • /
    • pp.775-780
    • /
    • 2010
  • Over 90% of the livestock excretions were treated and utilized by land application in Korea. Excessive application of the livestock manure as fertilizer has been issued as a main pollutant source in groundwater and watersheds. This study was seasonally conducted to identify the discharging characteristics with a certain artificial rainfall intensity (13 mm/hr) in terms of surface runoff, groundwater, and soil residue mass depending on the livestock manure types. A experimental field was constructed with three different sites that pig liquid fertilizer (LF), cattle manure (CM), and standard (S). The pig liquid fertilizer of 1,200 L and cattle manure of 900 kg were sprayed on each site ($50m^2$). The standard area was firmly prevented from any other contaminants. In the LF site, farmland discharging rate (FDR) was computed as 0.006 in CODcr, 0.015 in TN, and 0.029 in TP, resulted from the mass balance among total injection mass, surface runoff and groundwater. In the CM site, 29% of the nitrogen and phosphorus in each were discharged to the surface, and 64% and 58% of them were remained in the farmland. Surface runoff rate of the CM was higher than that of the LF, resulted from the solid form of the CM.

A Study on the Runoff Characteristics of Non-point Source in Urban Watershed - Case Study on the Dalseo and Daemyung Watershed (도시지역 비점오염물질의 유출특성에 관한 연구 - 달서천 및 대명천을 중심으로)

  • Jang Seong-Ho;Park Jin-Sick
    • Journal of Environmental Science International
    • /
    • v.14 no.12
    • /
    • pp.1171-1176
    • /
    • 2005
  • This study was conducted to identify the runoff characteristics of non-point source according to rainfall in Dalseo and Daemyung watershed. Land-uses of the Dalseo and Daemyung watershed were surveyed to urban $72.1\%$ and mountainous $6.7\%$, and urban $49.3\%$ and mountainous $20.5\%$, respectively Mean runoff coefficients in each area were estimated to Dalseo watershed 0.49 and Daemyung watershed 0.16. In the relationship between the rainfall and peak-flow correlation coefficients(r) were determined to Dalseo watershed 0.9060 and Daemyung watershed 0.5620. In the relationship between the antecedent dry period and flrst flow runoff correlation coefficients(r) were determined to Dalseo watershed 0.7217 and Daemyung watershed 0.2464. In the relationship between the rainfall and watershed loading, exponent values of SS in Dalseo and Daemyung watershed were estimated to 0.54 and 0.496, respectively.

Characteristics of Runoff Variation due to Watershed Urbanization (유역의 도시화에 따른 유출변화특성)

  • Heo, Chang-Hwan
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.5
    • /
    • pp.725-740
    • /
    • 2003
  • Urbanization concerned with concentration of population, activity and expanding the urban changes a natural environmental, and human activity in urban area causes the appearance of a new hydrologic cycle system. This study is carried out the analysis for the characteristics of runoff variation in urban areas with progress of urbanization. To simulate the mechanics of runoffs on small urban watershed, the ILLUDAS model is used in this study. From the analysis of the urban-runoff processes in small urban area with the progress of urbanization, the following conclusions is obtained. It is found in the results of calculated geographical parameter that peak time is quickened by 15∼35 minutes rather than the urbanization before. Also, in the analysis of the peak rate of runoff, the peak flow rise by 60 % than the urbanization before.

Study on Runoff Characteristics of Nonpoint Sources during Rainfall in Anyangchun Watershed (안양천 유역의 강우시 비점오염원에 따른 유출부하특성에 관한 연구)

  • Hwang, Byung-Gi;Yu, Se-Jin;Cha, Young-Ki
    • Journal of Environmental Impact Assessment
    • /
    • v.10 no.3
    • /
    • pp.223-234
    • /
    • 2001
  • In this study, we conducted a survey to examine the runoff characteristics of nonpoint sources, which wash off pollutants from the surface of basin during rainfall and affect water pollution of streams. An Anyangchun basin in the region Ewiwang City was selected as a study site. The basin divided into several subbasins such as Wanggokchun, Ojeonchun, and Anyangchun based on the tributaries, which confluence to the main stream of Anyangchun. Four times of field examination had been carried out between July and August of 2000, and water quality data collected from the surveys had been analysed. The survey includes in-situ flow, DO and PH measurements in the outlet of catchment. Laboratory analysis includes BOD, TN, TP. From the result, pollutant by runoff of nonpoint sources were washed out along with stormwater in the beginning of rainfall, and flowed into streams resulted in stream pollution. In case of BOD, the load from Ojeonchun catchment, most of which included urban areas, took up 50% of the total load from the entire watershed. Thus, by the results, it is clear that runoff load by urban nonpoint sources plays an important role in the control and management of nonpoint sources for the watershed.

  • PDF

Assessment of Water Balance Considering Runoff Characteristics in the Mountainous Area of Pyosun Catchment in Jeju Island (유출특성을 고려한 산지지역의 물수지 평가 - 제주도 표선유역을 중심으로 -)

  • Song, Sung-Ho;An, Jung-Gi;Lee, Gyu-Sang
    • Journal of Environmental Science International
    • /
    • v.24 no.4
    • /
    • pp.505-514
    • /
    • 2015
  • The grid-based water balance of watershed scale was assessed in the mountainous area of Pyosun catchment in Jeju Island after analyzing precipitation, evapotranspiration, and runoff from January 2008 to December 2013. The existing results of direct runoff, evapotranspirtion, and groundwater recharge comparing to precipitation were presented 22.0%, 25.6%, and 52.4%, respectively, in Pyosun catchment. However, this study indicated each component shows 14.5%, 24.2%, and 61.0%, respectively, in the mountainous area of Pyosun catchment. Therefore, groundwater recharge rate in the mountainous area appears higher than 10% comparing to the overall catchment. It would be analyzed that the amount of direct runoff is relatively small. Moreover, this difference could be generated because of the spatial discontinuities in the process of estimating the total amount of precipitation in the mountainous area. Therefore, the grid-based spatial analysis to maximize the spatial continuity would be useful for providing a more reasonable result when the total amount of water resources are evaluated in mountainous areas in the future.

A Study on Runoff Characteristics of Combined Sewer Overflow(CSO) in Urban Area Using GIS & SWMM

  • Kim, Jae-Hoon;Paik, Do-Hyeon
    • Journal of Environmental Health Sciences
    • /
    • v.31 no.6
    • /
    • pp.467-474
    • /
    • 2005
  • The runoff characteristics of combined sewer overflow(CSO) in the urban area of Jeonju were investigated and analyzed by using the SWMM (Storm Water Management Model) and GIS. From August to November 2004, investigations on two rainfall events were performed and flowrate, pH, BOD, COD, SS, T-N and T-P were measured. these data were used for model calibration. Using GIS technique, watershed characteristics of study area were calculated. that is, divide into sub_basin, total width, slope, make soil map etc. On the basis of the measured data and the simulation results by SWMM, it could be known that the $80-90\%$ of pollution load are discharged in early-stage storm runoff. SMC(site mean Concentration) for combined sewer system area were BOD 28.1, COD 31.5, SS 186 ppm etc. this is shown that during the rain fall, high concentration of waste was loaded to receiving water. Unit loads of combined sewer system area were BOD 306, COD 410, SS 789, T-N 79, T-P 6.8 kg/ha/yr.

Comparison of Rainfall-Runoff Characteristics at Stream in Urban and Rural Watershed (도시 및 농촌 유역 하천에서의 강우유출 특성 비교)

  • Kim, Ho-Sub;Kim, Sang-Yong;Park, Yun-Hee
    • Journal of Korean Society on Water Environment
    • /
    • v.34 no.6
    • /
    • pp.650-660
    • /
    • 2018
  • The objective of this study was to compare the rainfall-runoff characteristics in streams of classified urban and rural watershed using land use and population density. EMC (event mean concentration) of BOD, COD, TP and SS increased significantly in urban and rural watershed, but that of TN remained unchanged. Although there were no significant differences in EMC of BOD, COD, TN, TP depending on the watershed characteristics, EMC of BOD and COD significantly increased in the urban watershed, while EMC of TP increased in the rural watershed. In the urban watershed, the first flush time was faster and the first flush effect was stronger in BOD, COD, and TP. However, the difference between cumulative mass and cumulative volume was found to be less than 0.2 in the rural watershed, indicating a weak first flush effect. The discharged masses of BOD (70 %), COD (64 %), and TP (66 %) in the first flush of runoff were higher in urban watershed, while TN (67 %) was higher in rural watershed. The reproducibility of first flush time and the strength of first flush using CV (coefficient of variation) was found to be more reproducible for first flush time in both watersheds. In rural watershed, the CV value of first flush time for TP out of water quality parameters was lower. Whereas the CV values of first flush time for BOD, COD and TP in urban watersheds were similar.

The Development of Coupled SWAT-SWMM Model (II) Model Characteristics and Evaluation (SWAT-SWMM 결합모형의 개발 (II) 모형의 특징 및 평가)

  • Kim, Nam-Won;Won, Yoo-Seung
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.7
    • /
    • pp.599-612
    • /
    • 2004
  • The continuous long-term rainfall-runoff simulation model SWAT has the advantage of being able to account for various land use, however, SWAT lacks the capability of simulating the drainage characteristics of urban area. On the other hand, SWMM, which is the most popular model for runoff analysis of urban watershed, has the advantage of being capable of considering surface and drainage characteristics in urban area, but SWMM cannot easily account for land use other than urban area within a watershed. In this study, SWAT-SWMM model, which builds on the strengths of SWAT and SWMM, has been applied to the Osan River Watershed which is a tributary watershed to the Gyung-Ahn River. From the application, the results from coupled SWAT-SWMM model has been compared to the ones from SWAT for each hydrologic component such as evapotranspiration, surface runoff, groundwater flow, and watershed and channel discharge, and the runoff characteristics of two models for each hydrologic component has been discussed.

Characteristics of Runoff on Urban Watershed in Jeju island, Korea (제주도 도심하천 유역의 유출특성 해석)

  • Jung, Woo-Yul;Yang, Sung-Kee;Lee, Jun-Ho
    • Journal of Environmental Science International
    • /
    • v.22 no.5
    • /
    • pp.555-562
    • /
    • 2013
  • Jeju Island, the heaviest raining area in Korea, is a volcanic Island located at the southernmost of Korea, but most streams are of the dry due to its hydrological/geological characteristics different from those of inland areas. Therefore, there are limitations in applying the results from the mainland to the studies on stream run-off characteristics analysis and water resource analysis of Jeju Island. In this study, the SWAT(soil & water assessment tool) model is used for the Hwabuk stream watershed located east of the downtown to calculate the long-term stream run-off rate, and WMS(watershed modeling system) and HEC-HMS(hydrologic modeling system) models are used to figure out the stream run-off characteristics due to short-term heavy rainfall. As the result of SWAT modelling for the long-term rainfall-runoff model for Hwabuk stream watershed in 2008, 5.66% of the average precipitation of the entire basin was run off, with 3.47% in 2009, 8.12% in 2010, and root mean square error(RMSE) and determination coefficient($R^2$) was 496.9 and 0.87, respectively, with model efficient(ME) of 0.72. From the results of WMS and HEC-HMS models which are short-term rainfall-runoff models, unless there was a preceding rainfall, the runoff occurred only for rainfall of 40mm or greater, and the run-off duration averaged 10~14 hours.

A Study on the Variation of the Critical Duration According to Hydrologic Characteristics in Urban Area (도시유역에서 수문학적 특성에 따른 임계지속기간의 변화 연구)

  • Lee, Jung-Sik;Shin, Chang-Dong
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.5 no.3 s.18
    • /
    • pp.29-39
    • /
    • 2005
  • The objective of this study is to analyze the relation of critical duration according to hydrologic characteristics in urban areas. RRL, ILLUDAS, SWMM, and SMADA urban runoff models were applied to the Seongnae and Banpo watershed and experiment area of the Dong-Eui University. Also, hydrologic characteristics such as temporal pattern of rainfall, rainfall intensity formula, antecedent moisture condition, return period, and urban runoff model were used to simulate the critical duration of the test areas. The results of this study are as follows; (1) The type of temporal pattern of rainfall which causes maximum peak discharge in urban area has resulted in Huff's 4th quartile distribution. (2) The critical duration in urban areas were not influenced by hydrological factors except urban runoff model. (3) Peak discharge and critical duration in urban areas were influenced by the urban runoff model, and the SWMM model using Huff's 4th quartile distribution shows maximum critical duration.