• Title/Summary/Keyword: running maximum

Search Result 335, Processing Time 0.03 seconds

Running Safety Analysis of Railway Vehicle passing through Curve depending on Rail Inclination Change (레일 경좌 변화에 따른 곡선부 통과열차의 주행안전성 해석)

  • Kim, Moon Ki;Eom, Beom Gyu;Lee, Hi Sung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.3
    • /
    • pp.199-208
    • /
    • 2013
  • So far today, there is a speed limit by the radius of curve based on operation regulation in domestic railway, however a study for the maximum running speed at the curved section without any derailment would be necessary. The two major factors related to the running safety of railway vehicle are classified as the railway vehicle condition and the track condition. In terms of the rail inclination among many other factors, the determination of rail inclination within the possible limit is necessary for the geometrical structure of the optimum track. The disregard of the geometrical parameter related to the rail inclination may cause a serious problem to the running safety of railway vehicle. This study is focusing on the analyzing of running safety regard to the change of rail inclination among the many other parameters to improve derailment safety, so that there is an affection analysis of the running safety regard to the change of rail inclination in the ideal and geometric track condition. Also There is an affection analysis of the running safety regard to the simultaneous change of rail inclination and the running speed at the curved section. According to analysis results of running safety, In case that the left and right rail inclination are 1/40, the running safety of this condition defined than other conditions. Also, the rail inclination of conventional lines is 1/40, Therefore, the railway vehicle passing through curve is safe when the railway vehicle runs in conventional lines.

Effects of Prolonged Running-Induced Fatigue on the Periodicity of Shank-Foot Segment Coupling and Free Torque

  • Ryu, Ji-Seon
    • Korean Journal of Applied Biomechanics
    • /
    • v.26 no.3
    • /
    • pp.257-264
    • /
    • 2016
  • Objective: The purpose of this study was to determine the periodicity of shank-foot segment coupling and free torque before and after fatigue induced by prolonged running. Method: Fifteen young healthy male participants with a rear-foot strike ran on instrumented dual-belt treadmills at 70% of their maximum oxygen uptake for 65 min. Kinematic and ground reaction force data were collected for 20 continuous strides at 5 and 65 min (considered the fatigued condition). The approximate entropy tool was applied to assess the periodicity of the shank internal-external rotation, foot inversion-eversion, shank-foot segment coupling, and free torque for the two running conditions. Results: The periodicity of all studied parameters, except foot inversion-eversion, decreased after 65 min of running (fatigued condition) for 80% of the participants in this study. Furthermore, 60% of the participants showed similarities in the change of periodicity pattern in shank internal-external rotation, coupling, and free torque. Conclusion: The findings indicated that the foot inversion-eversion motion may pose a higher risk of injury than the shank internal-external rotation, coupling, and free torque in the fatigued condition during prolonged running.

Evaluation of Train Running Safety for Direct Fixation Concrete Track on Light Rapid Transit (경전철 직결식 콘크리트 궤도구조의 열차주행안전성 평가)

  • Choi, Jung-Youl;Kim, Jun-Hyung;Chung, Jee-Seung;Lee, Sun-Gil
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.5
    • /
    • pp.41-46
    • /
    • 2017
  • The coefficient of derailment and the rate of wheel load reduction were used as the index of train running safety that was directly affected the train derailment safety. In aspects of track, the train running safety depends on the complex interaction between wheel and rail, and the track-vehicle conditions (i.e., the curvature, cant, track system, vehicle speed and the operation conditions, etc). In this study, the relationship between the train running safety and the track curvature and vehicle speed for direct fixation concrete tracks currently employed in Korean light rapid transit was assessed by performing field tests using actual vehicles running along the service lines. The measured dynamic wheel load, lateral wheel load and lateral displacement of rail head were measured for same train running on four tested tracks under real conditions, which included curved and tangent tracks placed on the tunnel and bridge, thus increasing the train speed by approximately maximum design speed of each test site. Therefore, the measured dynamic track response was applied to the running safety analysis in order to evaluate the coefficient of derailment, the rate of wheel load reduction and the track gauge widening at each test site, and compare with the corresponding Korean train running safety standard. As the results, the lateral track response of direct fixation concrete track appeared to increase with the decreased track curvature; therefore, it was inferred that the track curvature directly affected the train running safety.

Study on the 350km/h Running Conditions for Korean High Speed Train(HSR-350x) (한국형 고속열차의 350km/h 주행조건 고찰)

  • Kim Ki-Hwan;Park Choon-Soo;Kim Seog-Won
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.127-131
    • /
    • 2005
  • The running test for the Korean High Speed Train(HSR-350x) was performed at operating maximum sped(350km/h) at December 16th, 2004. HSR-350x had been fabricated in June, 2002 and the on-line test for the performance fo HSR-350x was started with 60km/h at August 19th, 2002. The success of running test at 350km/h is recorded the 4th rank in the world. In this paper, the measured results of the major performance(running behaviour, current collection, stability of rail and bridge) characteristics for HSR-350x are reviewed. All measured values are within the criteria.

  • PDF

Running Stability Test of Developed Bogie for High Speed Train on the Roller Rig (주행 시험대에서의 고속전철 개발대차의 주행안정성 평가)

  • Kim, Jin-Tae;Oh, Hyeong-Sik;Jung, Hoon
    • Proceedings of the KSR Conference
    • /
    • 2002.10b
    • /
    • pp.839-844
    • /
    • 2002
  • This research aims to test the running stability of the developed bogie with maximum operating speed of 350km/h, which of Korea TGV was 300km/h. The running stability test has been executed in status of a dummy car with one developed bogie and one dummy bogie on the roller rig to embody similar operation condition. The test has been done in the two rail conditions, i.e. excitation and non-excitation, respectively. Running speed has been increased by the roller step by step. In consequence, the developed bogie was proven to be able to run upto 400 Km/h without any unstable point in the non-excitation. Vibration characteristics of carbody also was within the value specified on the UIC 515.

  • PDF

Biochemical Changes and Recovery After Half-course Marathon (하프코스 마라톤 후 체내의 생화학적 변화 및 회복)

  • Choi, Chang-Hyuk;Lee, Hyun-Sub;Seo, Hun-Suk;Kim, Sang-Kyung;Shin, Im-Hee
    • Journal of Korean Orthopaedic Sports Medicine
    • /
    • v.7 no.1
    • /
    • pp.45-49
    • /
    • 2008
  • Purpose: To evaluate the recovery time of biochemical changes of body after half-course marathon running. Materials and methods: Thirteen amateur half course marathon runners (12 males and 1 females) were studied. Their average age was 44 years old (range: $38{\sim}54$). Biochemical parameters with blood test including AST, ALT, CK-MB, Treponin, BUN, Cr Na, K were evaluated at finish line, 2nd days, 2nd weeks after running. Results: All the biochemical changes were within normal range throughout recovery time, AST reached its maximum level at finish line and continued until 2nd day after running and returned its pre-running level at 2nd week's test. CK-MB reached its maximum level 2nd day after running and recovered at 2nd week's test. Na, K, BUN and Cr reached to the maximum level at finish line, and recovered to pre-running level at 2nd day's test. Conclusion: In case of half-course marathon, the changes of the kidney enzymes due to dehydration were recovered after 2nd day. And the biochemical indicators of muscle fatigue recovered after 2nd week. It needs at least 2 weeks rest after half-course marathon to recover all the biochemical parameter of the body.

  • PDF

An Analysis of Running Safety for Railway Vehicle Depending on Actual Track Conditions (실제선로 조건에 따른 철도차량의 주행안전성 해석)

  • Kim, Yong-Won;Lee, Hi-Sung
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.6
    • /
    • pp.983-988
    • /
    • 2009
  • When the railway vehicle passing through curves & transitions, the running speed must improve by proposing the practical standard about maximum running possibility speed of each section on existing line considering running safety. In this paper, when the railway vehicle passing through curves of actual track conditions (Namsunghyun-Chungdo up & down lines), the effect that has influence on running safety is examined to devise the high speed of vehicle which passing through curves which risk of derailment is high. The running safety analysis is performed that running speed by curve radius improves 5-20% compared with existing speed under actual track conditions. In result of the running safety analysis, in case the speed condition is fewer than 15% compared with existing speed, the derailment coefficient and unloading ratio are within acceptable level. so we could confirm possibility of speed improvement on the whole Namsunghyun-Chungdo up & down lines.

Biomechanical Research of Soccer Footwear (축구화의 운동역학적 특성연구)

  • Jin, Young-Wan
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.2
    • /
    • pp.31-39
    • /
    • 2005
  • The Purpose of this study was to reveal the biomechanical difference of two soccer footwear(soft ground footwear and hard ground footwear). Secondly, the purpose of this study was to clarify how each type of soccer footwear effects soccer players, which will provide scientific data to coaches and players, to further prevent injuries and to improve each players capacity. The result of comparative analysis of two soccer footwear can be summarized as below. The comparison of the very first braking force at walking found distinctive factors in the statistical data(t=3.092, p<.05). Braking impulse of two difference footwear showed distinctive factors in the statistical data(t=2.542, p<.05). In comparing GRFz max(N), the result showed a statistically significant difference in the two soccer footwear at running(t=2.784, p<.05). In the maximum braking impulse(t=2.774, p<.05) and propulsive impulse for antero-posterior direction, there was a statistically significant difference between the two soccer footwear at running. In the maximum braking force(t=3.270, p<.05) and propulsive force(t=4.956, p<.05) for antero-posterior direction, there was a statistically significant difference between the two soccer footwear at running. Significant differences were not found in moment(rotational friction) with two difference soccer footwear(moment max; t=2.231, moment min; t=1.784).

Numerical Analysis of Accumulated Sliding Distance of Pre-Stressed Concrete (PSC) Bridge Bearing for High-Speed Railway for Ubiquitous Technology (유비쿼터스 기술을 위한 고속철도상 Pre-Stressed Concrete(PSC) 교량받침의 누적수평이동거리에 관한 수치해석)

  • Oh, Soontaek;Lee, Dongjun;Lee, Hongjoo;Jeong, Shinhyo
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.11 no.1
    • /
    • pp.9-18
    • /
    • 2015
  • Numerical analysis of PSC box bridge bearings for high speed KTX train vehicles has been carried out as a virtual simulation for Ubiquitous Technology. Improved numerical models of bridge, vehicle and interaction between bridge and train are considered, where bending and torsional modes are provided, whereas the exist UIC code is applied by the simplified HL loading. Dynamic and static analysed results are compared to get Dynamic Amplification Factors (D. A. F.) for maximum deflections and bending stresses up to running speed of 500 km/h. Equation from the regression analysis for the D. A. F. is presented. Sliding distance of the bearings for various KTX running speeds is compared with maximum and accumulated distances by the dynamic behaviors of PSC box bridge. Dynamic and static simulated sliding distances of the bearings according to the KTX running speed are proved as a major parameter in spite of the specifications of AASHTO and EN1337-2 focused on the distance by temperature variations.

Economical run strategy for Korea High Speed Train Prototype (한국형 고속전철 경제운전 전략)

  • Lee Tae-Hyung;Park Choon-Soo
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.1381-1385
    • /
    • 2004
  • This paper presents a modelling methodology using fuzzy logic and train performance simulation for determining an economical running pattern for a high speed train which minimizes energy consumption under an given trip margin. The economical running pattern is defined with an economical maximum speed in traction phase, a speed at the end of coasting. As a case study, the simulation is carried out for an economical run of korea high speed train prototype, and the results of fuzzy model described.

  • PDF