• Title/Summary/Keyword: rumen culture

Search Result 104, Processing Time 0.019 seconds

Effect of Four Medicinal Plants on In Vitro Ruminal Fermentation and Methane Emission (약용식물 4종의 in vitro 반추위 발효 성상 및 메탄 저감에 대한 영향)

  • Kim, Hyun-Sang;Lee, Seong-Shin;Wi, Ji-Soo;Lee, Yoo-Kyoung
    • Korean Journal of Organic Agriculture
    • /
    • v.32 no.3
    • /
    • pp.289-298
    • /
    • 2024
  • The objective of this study was to the effect of four medicinal plants (Rheum palmatum, Pharbitidis semen, Reynoutria japonica, Tribulus semen) supplementation on methane reduction and ruminal fermentation in in vitro batch culture method. Each medicinal plant was supplemented 5% on a substrate basis in the bottle, then filled with buffered rumen fluid. Incubation was conducted for 24 hours in a shaking incubator (39℃, 120 rpm). The ruminal pH values were not significantly different between the control and treatment groups. However, the digestibility of the feed was significantly higher in the group supplemented with medicinal plants than control group. Methane production (mL/g of digested dry matter) and total gas production (mL) was significantly lower in the treatment group compared to the control group in Tribulus semen group. Total volatile fatty acids concentration were significantly higher in all treatment groups than control group, and acetate concentration was significantly higher in all treatment groups than control group except for Rheum palmatum group. Propionate concentration was significantly higher in all treatment groups than control group, while butyrate concentration was significantly higher in Rheum palmatum group than control group. Ammonia nitrogen concentration was significantly higher in all treatment groups than control group. In conclusion, the addition of medicinal plants did not negatively impact rumen fermentation, and the results indicate that Tribulus semen has potential as a feed additive for reducing methane emissions.

Effect of Byproducts Supplementation by Partically Replacing Soybean Meal to a Total Mixed Ration on Rumen Fermentation Characteristics In Vitro (대두박 대체 부산물 위주의 TMR 사료가 반추위 내 미생물의 In Vitro 발효특성에 미치는 영향)

  • Bae, Gui Seck;Kim, Eun Joong;Song, Tae Ho;Song, Tae Hwa;Park, Tae Il;Choi, Nag Jin;Kwon, Chan Ho;Chang, Moon Baek
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.34 no.2
    • /
    • pp.129-140
    • /
    • 2014
  • This study was performed to evaluate the effects of replacing basic total mixed ration (TMR) with fermented soybean curd, Artemisia princeps Pampanini cv. Sajabal, and spent coffee grounds by-product on rumen microbial fermentation in vitro. Soybean in the basic TMR diet (control) was replaced by the following 9 treatments (3 replicates): maximum amounts of soybean curd (SC); fermented SC (FSC); 3, 5, and 10% FSC + fermented A. princeps Pampanini cv. Sajabal (1:1, DM basis, FSCS); and 3, 5, 10% FSC + fermented coffee meal (1:1, DM basis, FSCC) of soybean. FSC, FSCS, and FSCC were fermented using Lactobacillus acidophilus ATCC 496, Lactobacillus fermentum ATCC 1493, Lactobacillus plantarum KCTC 1048, and Lactobacillus casei IFO 3533. Replacing dairy cow TMR with FSC treatment led to a pH value of 6 after 8 h of incubation-the lowest value measured (p<0.05), and FSCS and FSCC treatments were higher than SC and FSC treatment after 6 h (p<0.05). Gas production was higher in response to 3% FSC and FSCC treatments than the control after 4-10 h. Dry matter digestibility was increased 0-12 h after FSC treatment (p<0.05) and was the highest after 24 h of 10% FSCS treatment. $NH_3-N$ concentration was the lowest after 24 h of FSC treatment (p<0.05). Microbial protein content increased in response to treatments that had been fermented by the Lactobacillus spp. compared to control and SC treatments (p<0.05). The total concentration of volatile fatty acids (VFAs) was increased after 6-12 h of FSC treatment (p<0.05), while the highest acetate proportion was observed 24 h after 5% and 10% FSCS treatments. The FSC of propionate proportion was increased for 0-10 h compared with among treatments (p<0.05). The highest acetate in the propionate ration was observed after 12 h of SC treatment and the lowest with FSCS 3% treatment after 24 h. Methane ($CH_4$) emulsion was lower with A. princeps Pampanini cv. Sajabal and spent coffee grounds treatments than with the control, SC, and FSC treatments. These experiments were designed to replace the by-products of dairy cow TMR with SC, FSC, FSCS, and FSCC to improve TMR quality. Condensed tannins contained in FSCS and FSCC treatments, which reduced $CH_4$ emulsion in vitro, decreased rumen microbial fermentation during the early incubation time. Therefore, future experiments are required to develop a rumen continuous culture system and an in vivo test to optimize the percentages of FSC, FSCS, and FSCC in the TMR diet of the dairy cows.

Effect of Concentrate Level on the Formation of Conjugated Linoleic Acid and Trans-octadecenoic Acid by Ruminal Bacteria when Incubated with Oilseeds In Vitro

  • Wang, J.H.;Song, M.K.;Son, Y.S.;Chang, M.B.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.5
    • /
    • pp.687-694
    • /
    • 2002
  • An in vitro study was conducted to examine the effect of addition level of concentrate on fermentation characteristics and long-chain unsaturated fatty acids composition, especially conjugated linoleic acid (CLA) and trans-octadecenoic acid (t-FA) by mixed ruminal bacteria when incubated with linseed or rapeseed. Four levels (0.83, 1.25, 1.67 and 2.08%, w/v) of concentrate and ground oilseeds (linseed or rapeseed; 0.83%, w/v) were added to mixed solution of strained rumen fluid with artificial saliva (1:1, v/v) in the glass jar with a glass lid equipped with stirrer, and was incubated anaerobically for 24 h at $39^{\circ}C$. Addition level of concentrate slightly reflect on pH and ammonia concentration of the culture solution at the various incubation times when incubated with both linseed and rapeseed. Total VFA concentration slightly increased with incubation times and concentrate levels for incubations with oilseeds. While CLA composition had a clearly increasing trend with incubation time when incubated with linseed, percent CLA was relatively stable when incubated with rapeseed. Percent CLA, however, had a clearly decreasing trend with concentrate level throughout incubation times with significances at 3 h incubations when incubated with linseed (p<0.038) and rapeseed (p<0.0009). The differences in compositions of t-FA were relatively small among concentrate levels for both incubations with linseed and rapeseed. The ratios of t-FA to CLA were lower for linseed with increased proportion of CLA than for rapeseed.

In vitro and in vivo evaluation of kenaf (Hibiscus cannabinus L.) as a roughage source for beef cattle

  • Oh, Seongjin;Mbiriri, David Tinotenda;Ryu, Chaehwa;Lee, Kangheon;Cho, Sangbuem;Choi, Nag-Jin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.10
    • /
    • pp.1598-1603
    • /
    • 2018
  • Objective: The goal of this study was to evaluate kenaf as a roughage source in vitro and its effects on meat quality of Hanwoo (Korean native) cattle. Methods: Three roughage materials, rice straw silage, ryegrass silage, and kenaf silage, were tested in a batch culture and feeding trial. Rumen fermentation parameters, including gas, pH, volatile fatty acid (VFA), and ammonia were analyzed. In the feeding trial, Hanwoo steers ($373.5{\pm}5.1kg$, n = 36, 11 month of age) were divided into three feeding groups (n = 12 each). Animals were fed with each silage and concentrate until the fattening stage. Results: Crude protein, ether extract, and non-structural carbohydrates were greater in kenaf silage. Total gas production was higher in ryegrass silage, followed by kenaf silage and rice straw silage (p<0.05). Total VFA and individual VFA (acetate, propionate, and n-butyrate) were greater in kenaf silage than rice straw silage (p<0.05). In vitro dry matter digestibility showed a similar trend to that of total gas and VFA production; it was higher in ryegrass silage and lower in rice straw (p<0.05). Throughout the feeding trial, the rice straw silage group showed significantly greater average daily gain than did the others (p<0.05). The feed conversion ratio in the group fed kenaf silage was significantly greater than that of others (p<0.05). No significant differences were observed in yield or quality traits, including carcass weight, ribeye area, backfat thickness, and scores for marbling, meat color, and fat color (p>0.05). Conclusion: The results indicated that no negative effects on growth performance and carcass characteristics occurred across treatments. Therefore, kenaf could be substituted for rice straw, which is most widely used as a roughage source in Korea.

Pretreatments of Broussonetia papyrifera: in vitro assessment on gas and methane production, fermentation characteristic, and methanogenic archaea profile

  • Dong, Lifeng;Gao, Yanhua;Jing, Xuelan;Guo, Huiping;Zhang, Hongsen;Lai, Qi;Diao, Qiyu
    • Animal Bioscience
    • /
    • v.35 no.9
    • /
    • pp.1367-1378
    • /
    • 2022
  • Objective: The present study was conducted to examine the gas production, fermentation characteristics, nutrient degradation, and methanogenic community composition of a rumen fluid culture with Broussonetia papyrifera (B. papyrifera) subjected to ensiling or steam explosion (SE) pretreatment. Methods: Fresh B. papyrifera was collected and pretreated by ensiling or SE, which was then fermented with ruminal fluids as ensiled B. papyrifera group, steam-exploded B. papyrifera group, and untreated B. papyrifera group. The gas and methane production, fermentation characteristics, nutrient degradation, and methanogenic community were determined during the fermentation. Results: Cumulative methane production was significantly improved with SE pretreatment compared with ensiled or untreated biomass accompanied with more volatile fatty acids production. After 72 h incubation, SE and ensiling pretreatments decreased the acid detergent fiber contents by 39.4% and 22.9%, and neutral detergent fiber contents by 10.6% and 47.2%, respectively. Changes of methanogenic diversity and abundance of methanogenic archaea corresponded to the variations in fermentation pattern and methane production. Conclusion: Compared with ensiling pretreatment, SE can be a promising technique for the efficient utilization of B. papyrifera, which would contribute to sustainable livestock production systems.

Effects of Organic Selenium Mix on the Performance, Carcass Characteristics, Tissue Selenium Distribution, and Economic Value in Finishing Hanwoo Steers (유기셀레늄 혼합제 급여가 비육말기 거세한우의 성장, 도체성적, 체내 셀레늄 분포 및 경제성에 미치는 영향)

  • Kim, D.K.;Jung, D.U.;Sung, H.G.
    • Journal of Animal Science and Technology
    • /
    • v.47 no.6
    • /
    • pp.975-984
    • /
    • 2005
  • This study fulfilled to investigate the feed efficiency, tissue selenium distribution, carcass characteristic and economic value in finishing Hanwoo steers fed organic selenium mix (OSM) which included seleno-yeast, rumen culture and other microbial supplements. Forty five finishing Hanwoo steers were tested for 4 months dividing to three feeding groups: OSM add as 0.5 ppm Se of DM feeds (0.5 ppm OSM), OSM enriched add as 1.0 ppm Se of DM feeds (1.0 ppm OSM) and basal diet without OSM (control). The total weight gains, the average daily gains and the feed intakes were not differ in treatments (p > 0.05). No differences (p > 0.05) were noted for hot carcass weight, loin eye area, backfat thickness, meat yield index, meat color, fat color, tenderness and maturity. However, the 1.0 ppm OSM showed better performances for feed requirement, TDN per gain, meat yield grade and meat quality grade compared to other groups. Tissue selenium distribution was increased by organic selenium feeding: higher Se concentration in liver and rump of 0.5 ppm OSM (p < 0.05), and kidney, liver, sirloin and rump of 1.0 ppm OSM (p < 0.05) than the tissues of control group. Generally, tissue selenium was the highest value in 1.0 ppm OSM and showed higher concentrate in order; kidney, liver, sirloin and rump. The income over feed cost was 1.06-fold higher in 1.0 ppm OSM than control group. In conclusion, organic selenium mix supplementation and its amounts were not influenced to feed intake, body gain and carcass characteristic but significantly increased tissue selenium. Therefore, these results suggest that finishing Hanwoo steer fed an enriched organic selenium mix with proper probiotics is able to produce “high-Se” beef as high bioavailable form as well as create a beneficial opportunity on Hanwoo farm.

Effects of Supplementation of Mixed Methanogens and Rumen Cellulolytic Bacteria on Biochemical Methane Potential with Pig Slurry (양돈슬러리를 이용한 혐기소화에서 미생물 첨가가 메탄발생에 미치는 영향)

  • Kim, Ji-Ae;Yoon, Young-Man;Jeong, Kwang-Hwa;Kim, Chang-Hyun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.6
    • /
    • pp.1049-1057
    • /
    • 2012
  • The study investigated the biochemical methane potential (BMP) assay of pig slurry supplemented with mixed methanogens and cellulolytic bacteria to improve anaerobic digestion for methane production. For the BMP assay, 7 different microbial supplementation groups consisted of the cultures of mixed methanogens (M), Fibrobacter succinogenes (FS), Ruminococcus flavefaciensn (RF), R. albus (RA), RA+FS, M+RA+FS, and control. The cultures were added in the batch reactors with the increasing dose levels of 1% (0.5 mL), 3% (1.5 mL) and 5% (2.5 mL). Incubation for the BMP assay was carried out for 60 days at $38^{\circ}C$ using anaerobic digestate obtained from an anaerobic digester with pig slurry as inoculum. In results, 5% RF and RA+FS increased total biogas up to 8.1 and 8.4%, respectively, compared with that of control (p<0.05). All 5% microbial culture supplements significantly increased methane production up to 12.1~17.9% compared with that of control (p<0.05). Total solid (TS) and volatile solid (VS) digestion efficiencies showed no relationship to the increased supplementation levels of microbial cultures. After incubation, pH values in all treatment groups ranged between 7.527 and 7.657 indicating that methanogensis was not inhibited during the incubation. In conclusion, the results indicated that both hydrolysis and methanogenesis stages for methane production in anaerobic batch reactors were influenced by the supplemented microorganisms due to the chemical characteristics of pig slurry, but only the 5% supplementation level of all microbial culture supplements used in the experiment affected methane production.

Effects of Supplementation of Mixed Methanogens and Rumen Cellulolytic Bacteria on Biochemical Methane Potential (혼합 메탄균과 반추위 섬유소 분해균 첨가가 메탄발생에 미치는 영향)

  • Kim, Ji-Ae;Yoon, Young-Man;Kim, Chang-Hyun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.4
    • /
    • pp.515-523
    • /
    • 2012
  • The study investigated the biochemical methane potential (BMP) assay of cellulose supplementing with mixed methanogens and cellulolytic bacteria to improve anaerobic digestion for methane production. For the BMP assay, 7 different microbial supplementation groups were consisted of the cultures of mixed methanogens (M), Fibrobacter succinogenes (FS), Ruminococcus flavefaciensn (RF), R. albus (RA), RA+FS and M+RA+FS including control. The cultures were added in the batch reactors with the increasing dose levels of 1% (0.5 mL), 3% (1.5 mL) and 5% (2.5 mL). Incubation for the BMP assay was carried out for 40 days at $38^{\circ}C$ and anaerobic digestate obtained from an anaerobic digester with pig slurry as inoculum was used. In results, 5% FS increased total biogas and methane production up to 10.4~22.7% and 17.4~27.5%, respectively, compared to other groups (p<0.05). Total solid (TS) digestion efficiency showed a similar trend to the total biogas and methane productions. Generally the TS digestion efficiency of the FS group was higher than that of other groups showing at the highest value of 64.2% in the 5% FS group. Volatile solid (VS) digestion efficiencies of 68.4 and 71.0% in the 5% FS and the 5% RF were higher than other groups. After incubation, pH values in all treatment groups were over 6.4 indicating that methanogensis was not inhibited during the incubation. In conclusion, the results indicated that the hydrolysis stage for methane production in anaerobic batch reactors was the late-limiting stage compared with the methanogenesis stage, and especially, as the supplementation levels of F. succinogenes supplementation increased, the methane production was increased in the BMP assay compared with other microbial culture addition.

Analysis of Antibacterial, Antioxidant, and In Vitro Methane Mitigation Activities of Fermented Scutellaria baicalensis Georgi Extract (발효 황금 뿌리 추출물의 항균, 항산화 효과 및 메탄가스 저감 효과 In Vitro)

  • Marbun, Tabita Dameria;Song, Jaeyong;Lee, Kihwan;Kim, Su Yeon;Kang, Juhui;Lee, Sang Moo;Choi, Young Min;Cho, Sangbuem;Bae, Guiseck;Chang, Moon Baek;Kim, Eun Joong
    • Korean Journal of Organic Agriculture
    • /
    • v.24 no.4
    • /
    • pp.735-746
    • /
    • 2016
  • This study was conducted to investigate the antibacterial, antioxidant, and in vitro greenhouse gas mitigation activities of fermented Scutellaria baicalensis Georgi extract. Seven starter cultures were used, comprising four of lactic acid bacteria and three of Saccharomyces cerevisiae. Ten grams of S. baicalensis Georgi powder was diluted in 90 mL autoclaved MRS broth. Each seed culture was inoculated with 3-10% (v/v) S. baicalensis Georgi MRS broth and incubated at $30^{\circ}C$ for 48 h. Among the starter cultures used, only Lactobacillus plantarum EJ43 could withstand the fermentation conditions. This fermentation broth was dried and extracted with ethanol to assess its antibacterial, antioxidant, and in vitro methane mitigation activities. The extract of S. baicalensis Georgi fermented by L. plantarum EJ43 (SBLp) showed higher antibacterial activity (bigger clear zone) compared to the unfermented S. baicalensis Georgi extract (SB0). SBLp also presented 1.2 folds higher antioxidant activity than SB0. During in vitro rumen fermentation, SBLp showed reduction in methane production compared to SB0 or the control. In conclusion, fermentation by L. plantarum EJ43 may enhance antibacterial and antioxidant activities of S. baicalensis Georgi and decrease enteric methane production.

Effects of Supplementing Brown Seaweed By-products in the Diet of Holstein Cows during Transition on Ruminal Fermentation, Growth Performance and Endocrine Responses

  • Hong, Z.S.;Kim, E.J.;Jin, Y.C.;Lee, J.S.;Choi, Y.J.;Lee, H.G.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.9
    • /
    • pp.1296-1302
    • /
    • 2015
  • This study was conducted to examine the effects of supplementing brown seaweed by-products (BSB) in the diet of ruminants on ruminal fermentation characteristics, growth performance, endocrine response, and milk production in Holstein cows. In Experiment 1, the effects of different levels (0%, 2%, and 4% of basal diet as Control, 2% BSB, 4% BSB, respectively) of BSB were evaluated at 3, 6, 9, 12, and 24 h in vitro batch culture rumen fermentation. The pH tended to be higher for the higher level of BSB supplementation, with the pH at 12 h being significantly higher (p<0.05) than that of the control. The concentration of ammonia nitrogen was lower at 3, 9, 12, and 24 h incubation (p<0.05) compared with the control, and tended to be low at other incubation times. Volatile fatty acid concentration appeared to be minimally changed while lower values were observed with 4% BSB treatment at 24 h (p<0.05). In Experiment 2, effects of levels (0%, 2%, and 4%) of BSB on growth performance, endocrine responses and milk production were studied with Holstein dairy cows during transition. Dry matter intake, daily gain and feed efficiency were not affected by BSB supplementation. The concentration of plasma estrogen for the control, 2% BSB and 4% BSB after three months of pregnancy were 55.7, 94.1, and 72.3 pg/mL, respectively (p = 0.08). Although the differences of progesterone levels between BSB treatments and the control were minimal, the concentration in 4% BSB treatment increased to 157.7% compared with the initial level of the study. Triiodothyronine and thyroxine levels were also higher after both three months and eight months of pregnancy than the initial level at the beginning of the study. In addition, BSB treatments during one month after delivery did not affect daily milk yield and composition. In conclusion, the present results indicate that supplementation of BSB did not compromise ruminal fermentation, and animal performance at lower levels and hence may have potential to be used as a safe feed ingredient in dairy cows.