DOI QR코드

DOI QR Code

Effect of Four Medicinal Plants on In Vitro Ruminal Fermentation and Methane Emission

약용식물 4종의 in vitro 반추위 발효 성상 및 메탄 저감에 대한 영향

  • 김현상 (국립축산과학원 동물영양생리과) ;
  • 이성신 (국립축산과학원 동물영양생리과) ;
  • 위지수 (국립축산과학원 동물영양생리과) ;
  • 이유경 (국립축산과학원 동물영양생리과)
  • Received : 2024.03.20
  • Accepted : 2024.07.18
  • Published : 2024.08.30

Abstract

The objective of this study was to the effect of four medicinal plants (Rheum palmatum, Pharbitidis semen, Reynoutria japonica, Tribulus semen) supplementation on methane reduction and ruminal fermentation in in vitro batch culture method. Each medicinal plant was supplemented 5% on a substrate basis in the bottle, then filled with buffered rumen fluid. Incubation was conducted for 24 hours in a shaking incubator (39℃, 120 rpm). The ruminal pH values were not significantly different between the control and treatment groups. However, the digestibility of the feed was significantly higher in the group supplemented with medicinal plants than control group. Methane production (mL/g of digested dry matter) and total gas production (mL) was significantly lower in the treatment group compared to the control group in Tribulus semen group. Total volatile fatty acids concentration were significantly higher in all treatment groups than control group, and acetate concentration was significantly higher in all treatment groups than control group except for Rheum palmatum group. Propionate concentration was significantly higher in all treatment groups than control group, while butyrate concentration was significantly higher in Rheum palmatum group than control group. Ammonia nitrogen concentration was significantly higher in all treatment groups than control group. In conclusion, the addition of medicinal plants did not negatively impact rumen fermentation, and the results indicate that Tribulus semen has potential as a feed additive for reducing methane emissions.

이번 연구에서는 항산화 효과가 있는 약용식물로 알려진 대황, 견우자, 호장근, 질려자를 메탄 저감 사료첨가제로 이용하고자 in vitro 반추위 발효성상과 메탄 발생량에 미치는 영향에 대해 연구하였다. 각 약용식물을 건조시켜 분쇄 후 기질의 0.5%를 첨가하여 24시간 배양 실험을 진행하였다. 반추위 pH는 대조구와 약용식물 첨가간의 유의적인 차이가 없었으며 적정 수치를 보였다. 건물 소화율과 총 가스 발생량은 약용식물 전 첨가구에서 대조구에 비해 유의적으로 높았다. 메탄 발생량은 질려자 처리구에서만 대조구에 비해 유의적으로 낮았다. 이외에도 암모니아태 질소와 휘발성 지방산 모두 약용식물 처리구에서 유의적으로 높았으며, 특히 propionate 생성량은 전 처리구에서 유의적으로 높았다. 연구결과, 약용식물 첨가가 반추위 발효에는 부정적인 영향을 미치지 않았음을 확인하였다. 이 중 질려자 처리구에서 반추위 발효성상에 부정적인 영향을 보이지 않고 메탄 저감을 보이는 사료첨가제로서 활용성을 확인하였다. 추후 다양한 첨가 수준에 대한 연구를 진행하여 적정수준을 찾고 급여사료 종류, 가축의 연령, 사육환경 등 다양한 조건을 고려한 in vivo 실증 연구가 필요할 것으로 사료된다.

Keywords

Acknowledgement

본 연구는 농촌진흥청 연구사업(RS-2020-RD009319) 및 2024년도 농촌진흥청 국립축산과학원 전문연구원 지원사업에 의해 이루어진 것임.

References

  1. Allison, M. J. 1978. Production of branched-chain volatile fatty acids by certain anaerobic bacteria. Appl Environ Microbiol. 35(5): 872-877. https://doi.org/10.1128/aem.35.5.872-877.1978
  2. Almeida, A. K., R. S. Hegarty, and A. Cowie 2021. Meta-analysis quantifying the potential of dietary additives and rumen modifiers for methane mitigation in ruminant production systems. Anim Nutr. 7(4): 1219-1230. https://doi.org/10.1016/j.aninu.2021.09.005
  3. Chaney, A. L. and E. P. Marbach. 1962. Modified reagents for determination of urea and ammonia. Clin. Chem. 8(2): 130-132. https://doi.org/10.1093/clinchem/8.2.130
  4. Choi , H. D., S. N. Yu, S. G. Park, Y. W. Ki m, H. W. Nam, H. H. An, S. H. Ki m, K. Y. Kim, and S. C. Ahn. 2017. Biological Activities of Pharbitis nil and Partial Purification of Anticancer Agent from Its Extract. Journal of Life Science. 27(2): 225-232. https://doi.org/10.5352/JLS.2017.27.2.225
  5. Efremenko, E., O. Senko, N. Stepanov, N. Mareev, A. Volikov, and I. Perminova. 2020. Suppression of methane generation during methanogenesis by chemically modified humic compounds. Antioxidants. 9(11): 1140.
  6. Erwin, E. S., G. J. Marco, and E. M. Emery. 1961. Volatile fatty acid analyses of blood and rumen fluid by gas chromatography. J. Dairy Sci. 44: 1768-1771. https://doi.org/10.3168/jds.S0022-0302(61)89956-6
  7. Feng, Z. H., Y. F. Cao, Y. X. Gao, Q. F. Li, and J. G. Li. 2012. Effect of gross saponin of Tribulus terrestris on ruminal fermentation and methane production in vitro. J. Anim. Vet. Adv. 11(12): 2121-2125. https://doi.org/10.3923/javaa.2012.2121.2125
  8. Garcia-Gonzalez, R., S. Lopez, M. Fernandez, and J. S. Gonzale. 2006 Effect of addition of some medicinal plants on methane production in a stimulating fermenter (RUSITEC). Int Congr Ser. 1293: 172-175 https://doi.org/10.1016/j.ics.2006.01.044
  9. Hiltner, P. and B. A. Dehority. 1983. Effect of soluble carbohydrates on digestion of cellulose by pure cultures of rumen bacteria. Appl Environ Microbiol. 46(3): 642-648. https://doi.org/10.1128/aem.46.3.642-648.1983
  10. Johnson, D. E., K. A. Johnson, G. M. Ward, and M. E. Branine. 2000. Ruminants and other animals. Anonymous Atmospheric Methane: Its Role in the Global Environment, Springer. pp. 112-133.
  11. Jung, H. K., Y. J. Kim, B. K. Park, S. C. Park, Y. S. Jeong, and J. H. Hong. 2007. Antioxidative and Antimicrobial Activities of Medicinal Plant Extracts for Screening Phytobiotic Material. J. Korean Soc Food Sci Nutr. 36(10): 1235-1240 https://doi.org/10.3746/jkfn.2007.36.10.1235
  12. Kianbakht, S. and F. Jahaniani. 2003. Evaluation of antibacterial activity of Tribulus terrestris L. Ir J Med Sci. (03): 22-24
  13. Kim, C. J. and H. J. Suh. 2005. Antioxidant Activities of Rhubarb Extracts Containing Phenolic Compounds. J. Korean Soc. Food Cult. 20(1): 77-85.
  14. Kim, J. H. and Y. S. Ko. 2011. The biological activities of extracts and fractions of herbal plants. JKMR. 21(1): 47-56.
  15. Kim, M. J., T. K. Jung, H. C. Park, and K. S. Yoon. 2016. Skin Volume Augmentation and Anti-wrinkle Effects of Tribulus terrestris Fruit Extract. KSBB Journal. 31(3): 178-185. https://doi.org/10.7841/ksbbj.2016.31.3.178
  16. Kim, Y. H., S. M. Lee, S. J. Cheon, M. J. Jang, D. H. Jun, H. J. Choi, W. A. Cho, and J. T. Lee. 2007. Study on Anti-oxidant Activity of Four Kinds of Korea Herb Medicine Materials. JKSFB. 5(4): 139-144.
  17. Lee, A., H. R. Park, M. S. Kim, S. B. Cho, and N. J. Choi. 2014. A Comparative Study between Microbial Fermentation and Non-Fermentation on Biological Activities of Medicinal Plants, with Emphasis on Enteric Methane Reduction. Korean J Organic Agri. 22(4): 801-813. https://doi.org/10.11625/KJOA.2014.22.4.801
  18. McDonald, P., R. A. Edwards, J. F. D. Greenhalgh, C. A. Morgan, L. A. Sinclair, and R. G. Wilkinson. Animal Nutrition. 6th ed. London: Prentice Hall, 2002.
  19. Morsy, T. A., G. A. Gouda, and A. E. Kholif. 2022. In vitro fermentation and production of methane and carbon dioxide from rations containing Moringa oleifera leave silage as a replacement of soybean meal: In vitro assessment. Environ. Sci. Pollut. Res. 29(46): 69743-69752. https://doi.org/10.1007/s11356-022-20622-2
  20. National Inventory Report (NIR). 2022. Greenhouse Gas Inventory and Research Center of Korea.
  21. Oleszek, M. and S. Kozachok. 2018. Antioxidant activity of plant extracts and their effect on methane fermentation in bioreactors. Int. Agrophys. 32(3): 385-401.
  22. Oh, S. J., N. I. Baek, and H. Y. Kim. 2001. Piceatannol, Antioxidant Compound Isolated from the Root of Rheum undulatum L. Appl Biol Chem. 44(3): 208-210.
  23. Oskoueian, E., N. Abdullah, and A. Oskoueian. 2013. Effects of flavonoids on rumen fermentation activity, methane production, and microbial population. Biomed Res Int. 349129.
  24. Pazla, R., N. Jamarun, M. Zain, A. Arief, G. Yanti, E. M. Putri, and R. H. Candra. 2022. Impact of Tithonia diversifolia and Pennisetum purpureum-based ration on nutrient intake, nutrient digestibility and milk yield of Etawa crossbreed dairy goat. Int. J. Vet. Sci. 11(3): 327-335.
  25. Rice-Evans, C. A., N. J. Miller, and G. Paganga. 1996. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic Biol Med. 20(7): 933-956. https://doi.org/10.1016/0891-5849(95)02227-9
  26. Rowe, J. B., A. Davies, and A. W. J. Brome. 1983. Changing rumen fermentation by chemical means. In Recent Advances in Animal Nutrition in Australia, 1983, ed. D. J. Farrell and P. Vohra. University of New England Publishing Unit, Armidale. pp. 102-109.
  27. Soliva, C. R., A. B. Zeleke, C. Clement, H. D. Hess, V. Fievez, and M. Kreuzer. 2008. In vitro screening of various tropical foliages, seeds, fruits and medicinal plants for low methane and high ammonia generating potentials in the rumen. Anim Feed Sci Technol. 147(1-3): 53-71. https://doi.org/10.1016/j.anifeedsci.2007.09.009
  28. Stiles, D. A., E. E. Bartley, R. E. Meyer, C. W. Deyoe, and H. B. Pfost. 1970. Feed Processing. VII. Effect of an expansion-processed mixture of grain and urea (starea) on rumen metabolism in cattle and on urea toxicity. J. Dairy. Sci. 53(10): 1436-1447. https://doi.org/10.3168/jds.S0022-0302(70)86412-8
  29. Tilley, J. M. A. and D. R. Terry. 1963. A two-stage technique for the in vitro digestion of forage crops. Grass and forage sci. 18(2): 104-111. https://doi.org/10.1111/j.1365-2494.1963.tb00335.x
  30. Wu, Q., H. Chen, F. Zhang, W. Wang, F. Xiong, Y. Liu, L. Lv, W. Li, Y. Bo, and H. Yang. 2022. Cysteamine Supplementation In Vitro Remarkably Promoted Rumen Fermentation Efficiency towards Propionate Production via Prevotella Enrichment and Enhancing Antioxidant Capacity. Antioxidants. 11(11): 2233.
  31. Yang, S. H., S. Y. Lee, S. B. Cho, K. H. Park, J. K. Park, D. Y. Choi, and Y. H. Yoo. 2011. The Effect of Vegetable Sources Supplementation on In vitro Ruminal Methane Gas Production. JAES. 17(3): 171-180.