• Title/Summary/Keyword: rule-based control

Search Result 665, Processing Time 0.03 seconds

The Control of Character's Behavior by Using FSM-Based Probability Estimation in Games (게임에서 FSM-기반 확률 추정을 이용한 캐릭터의 행동제어)

  • Kim, Hyung-Il;Yoon, Hyun-Nim
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.9
    • /
    • pp.1269-1281
    • /
    • 2005
  • The control of character's behavior in games is determined by game designers. One of the popular method used in the control of character's behaviors is rule-based. The rule-based control of behavior makes the flow of play simple and boring. In this paper, we propose an efficient method of controling character's behaviors which can generate various actions of characters by using probability estimation applied to the character's behaviors.

  • PDF

Fuzzy control for geometrically nonlinear vibration of piezoelectric flexible plates

  • Xu, Yalan;Chen, Jianjun
    • Structural Engineering and Mechanics
    • /
    • v.43 no.2
    • /
    • pp.163-177
    • /
    • 2012
  • This paper presents a LMI(linear matrix inequality)-based fuzzy approach of modeling and active vibration control of geometrically nonlinear flexible plates with piezoelectric materials as actuators and sensors. The large-amplitude vibration characteristics and dynamic partial differential equation of a piezoelectric flexible rectangular thin plate structure are obtained by using generalized Fourier series and numerical integral. Takagi-Sugeno (T-S) fuzzy model is employed to approximate the nonlinear structural system, which combines the fuzzy inference rule with the local linear state space model. A robust fuzzy dynamic output feedback control law based on the T-S fuzzy model is designed by the parallel distributed compensation (PDC) technique, and stability analysis and disturbance rejection problems are guaranteed by LMI method. The simulation result shows that the fuzzy dynamic output feedback controller based on a two-rule T-S fuzzy model performs well, and the vibration of plate structure with geometrical nonlinearity is suppressed, which is less complex in computation and can be practically implemented.

Active Rule System Based on User's Emotional Margin for Power Saving Control (절전제어를 위한 사용자 감성마진 적용 능동규칙시스템)

  • Lee, Yonsik;Jang, Minseok;Kang, Sunkyung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.3
    • /
    • pp.119-124
    • /
    • 2014
  • In this paper, we propose the active rule system applying with emotional margin for power saving control. The proposed system in this paper is a part of the system which derives smart power saving by adjusting the illuminance using active rules within compromising the user's emotion. For this, we set the specific range of standard illuminance and the lower bound of user's emotional margin of illuminance based on measurements and analysis, and use these data in design of active rules. And then, we design and implement the active rule system using mobile agent. The mobile agent in the proposed system migrates to the destination sensor nodes, acquires and transmits sensor data according to the purpose and needs through the active rules, and directly executes the actions corresponding to the optional events(changed sensor data and/or time etc.). And then, we show the potential applicability of the proposed active rule system in various active sensor network applications through the interaction with the rule base and mobile sensor network middleware system.

SOC Sustaining Strategy for HEV through State-machine Control (하이브리드 차량의 SOC 유지전략 방법)

  • Byun, Sang-Min;Kim, Beom-Soo;Cha, Suk-Won
    • New & Renewable Energy
    • /
    • v.4 no.4
    • /
    • pp.65-71
    • /
    • 2008
  • Considering the world's environmental problem, HEVs are projected as one of the solution. The keys of the HEV cruise control are expanding the use of electric motor and operating the internal combustion engine in the efficient region. This paper presents a new structure of SOC sustaining model where state-machine control is used. The proposed model defines battery charging and discharging as states and SOC of the battery as control variables. In this paper, we introduce various methods in deterministic rule-based control for HEV and describe a new SOC sustaining controller used by state-machine.

  • PDF

Expert System for Intelligent Control-Based Job Scheduling in FMS (FMS 에서의 지능제어형 생산계획을 위한 전문가 시스템)

  • 정현호;이창훈;서기성;우광방
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.5
    • /
    • pp.527-537
    • /
    • 1990
  • This paper describes an intelligent control-based job scheduler, named ESIJOBS, for flexible manufacturing system. In order to construct rulebase of this system, traditional rules of job scheduling in FMS are examined and evaluated. This result and the repetitional simulations with graphic monitoring system are used to form the rulebase of ESIJOBS, which is composed of three parts:six part selection rules, four machine center selection rules, and twenty-one metarules. Appropriate scheduling rule sets are selected by this rulebase and manufacturing system status. The performances of all simulations are affected by random breakdowns of major FMS components during each simulation. Six criteria are used to evaluate the performance of each scheduling. The two modes of ESIJOBS are simulated and compared with combinational 24 rule-set simulations. In this comparison ESIJOBS dominated the other rule-set simulations and showed the most excellent performance particularly in three criteria.

DESIGN OF A FPGA BASED ABWR FEEDWATER CONTROLLER

  • Huang, Hsuanhan;Chou, Hwaipwu;Lin, Chaung
    • Nuclear Engineering and Technology
    • /
    • v.44 no.4
    • /
    • pp.363-368
    • /
    • 2012
  • A feedwater controller targeted for an ABWR has been implemented using a modern field programmable gate array (FPGA), and verified using the full scope simulator at Taipower's Lungmen nuclear power station. The adopted control algorithm is a rule-based fuzzy logic. Point to point validation of the FPGA circuit board has been executed using a digital pattern generator. The simulation model of the simulator was employed for verification and validation of the controller design under various plant initial conditions. The transient response and the steady state tracking ability were evaluated and showed satisfactory results. The present work has demonstrated that the FPGA based approach incorporated with a rule-based fuzzy logic control algorithm is a flexible yet feasible approach for feedwater controller design in nuclear power plant applications.

A novel multi-feature model predictive control framework for seismically excited high-rise buildings

  • Katebi, Javad;Rad, Afshin Bahrami;Zand, Javad Palizvan
    • Structural Engineering and Mechanics
    • /
    • v.83 no.4
    • /
    • pp.537-549
    • /
    • 2022
  • In this paper, a novel multi-feature model predictive control (MPC) framework with real-time and adaptive performances is proposed for intelligent structural control in which some drawbacks of the algorithm including, complex control rule and non-optimality, are alleviated. Hence, Linear Programming (LP) is utilized to simplify the resulted control rule. Afterward, the Whale Optimization Algorithm (WOA) is applied to the optimal and adaptive tuning of the LP weights independently at each time step. The stochastic control rule is also achieved using Kalman Filter (KF) to handle noisy measurements. The Extreme Learning Machine (ELM) is then adopted to develop a data-driven and real-time control algorithm. The efficiency of the developed algorithm is then demonstrated by numerical simulation of a twenty-story high-rise benchmark building subjected to earthquake excitations. The competency of the proposed method is proven from the aspects of optimality, stochasticity, and adaptivity compared to the KF-based MPC (KMPC) and constrained MPC (CMPC) algorithms in vibration suppression of building structures. The average value for performance indices in the near-field and far-field (El earthquakes demonstrates a reduction up to 38.3% and 32.5% compared with KMPC and CMPC, respectively.

Rule-Based Fuzzy-Neural Networks Using the Identification Algorithm of the GA Hybrid Scheme

  • Park, Ho-Sung;Oh, Sung-Kwun
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.1
    • /
    • pp.101-110
    • /
    • 2003
  • This paper introduces an identification method for nonlinear models in the form of rule-based Fuzzy-Neural Networks (FNN). In this study, the development of the rule-based fuzzy neural networks focuses on the technologies of Computational Intelligence (CI), namely fuzzy sets, neural networks, and genetic algorithms. The FNN modeling and identification environment realizes parameter identification through synergistic usage of clustering techniques, genetic optimization and a complex search method. We use a HCM (Hard C-Means) clustering algorithm to determine initial apexes of the membership functions of the information granules used in this fuzzy model. The parameters such as apexes of membership functions, learning rates, and momentum coefficients are then adjusted using the identification algorithm of a GA hybrid scheme. The proposed GA hybrid scheme effectively combines the GA with the improved com-plex method to guarantee both global optimization and local convergence. An aggregate objective function (performance index) with a weighting factor is introduced to achieve a sound balance between approximation and generalization of the model. According to the selection and adjustment of the weighting factor of this objective function, we reveal how to design a model having sound approximation and generalization abilities. The proposed model is experimented with using several time series data (gas furnace, sewage treatment process, and NOx emission process data from gas turbine power plants).

FUZZY IDENTIFICATION BY MEANS OF AUTO-TUNING ALGORITHM AND WEIGHTING FACTOR

  • Park, Chun-Seong;Oh, Sung-Kwun;Ahn, Tae-Chon;Pedrycz, Witold
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.701-706
    • /
    • 1998
  • A design method of rule -based fuzzy modeling is presented for the model identification of complex and nonlinear systems. The proposed rule-based fuzzy modeling implements system structure and parameter identification in the efficient form of " IF..., THEN,," statements. using the theories of optimization and linguistic fuzzy implication rules. The improved complex method, which is a powerful auto-tuning algorithm, is used for tuning of parameters of the premise membership functions in consideration of the overall structure of fuzzy rules. The optimized objective function, including the weighting factors, is auto-tuned for better performance of fuzzy model using training data and testing data. According to the adjustment of each weighting factor of training and testing data, we can construct the optimal fuzzy model from the objective function. The least square method is utilized for the identification of optimum consequence parameters. Gas furance and a sewage treatment proce s are used to evaluate the performance of the proposed rule-based fuzzy modeling.

  • PDF

Design of rule based expert controller for time delay systems (지연시간을 갖는 계통의 성능 향상을 위한 지식기반 전문가 제어기 설계)

  • 박귀태;이기상;김성호;박태홍;고응렬
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.117-121
    • /
    • 1990
  • The control process involving pure time delays presents a continuing challenge to the control system engineer. The nonlinear nature of the delay which can be introduced into the system make the use of conventional control algorithms a poor prospect. The Smith Predictor was developed to alleviate this problem. Unfortunately the quality of control achieved with the Smith Predictor is known to be sensitive to modelling errors. Only recently have researchers attempted to quantify the Smith Predictor controller's robustness to modelling errors. In several studies stability boundaries were plotted as functions of errors in parameters. But the research results address the question of performance of Smith Predictor controllers, In this paper, the Rule based Expert Systems for performance improvement of the Smith Predictor controller are developed.

  • PDF