• Title/Summary/Keyword: rule learning

Search Result 649, Processing Time 0.035 seconds

Fuzzy Classification Rule Learning by Decision Tree Induction

  • Lee, Keon-Myung;Kim, Hak-Joon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.3 no.1
    • /
    • pp.44-51
    • /
    • 2003
  • Knowledge acquisition is a bottleneck in knowledge-based system implementation. Decision tree induction is a useful machine learning approach for extracting classification knowledge from a set of training examples. Many real-world data contain fuzziness due to observation error, uncertainty, subjective judgement, and so on. To cope with this problem of real-world data, there have been some works on fuzzy classification rule learning. This paper makes a survey for the kinds of fuzzy classification rules. In addition, it presents a fuzzy classification rule learning method based on decision tree induction, and shows some experiment results for the method.

Reinforcement Learning with Clustering for Function Approximation and Rule Extraction (함수근사와 규칙추출을 위한 클러스터링을 이용한 강화학습)

  • 이영아;홍석미;정태충
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.11
    • /
    • pp.1054-1061
    • /
    • 2003
  • Q-Learning, a representative algorithm of reinforcement learning, experiences repeatedly until estimation values about all state-action pairs of state space converge and achieve optimal policies. When the state space is high dimensional or continuous, complex reinforcement learning tasks involve very large state space and suffer from storing all individual state values in a single table. We introduce Q-Map that is new function approximation method to get classified policies. As an agent learns on-line, Q-Map groups states of similar situations and adapts to new experiences repeatedly. State-action pairs necessary for fine control are treated in the form of rule. As a result of experiment in maze environment and mountain car problem, we can achieve classified knowledge and extract easily rules from Q-Map

Function Approximation Based on a Network with Kernel Functions of Bounds and Locality : an Approach of Non-Parametric Estimation

  • Kil, Rhee-M.
    • ETRI Journal
    • /
    • v.15 no.2
    • /
    • pp.35-51
    • /
    • 1993
  • This paper presents function approximation based on nonparametric estimation. As an estimation model of function approximation, a three layered network composed of input, hidden and output layers is considered. The input and output layers have linear activation units while the hidden layer has nonlinear activation units or kernel functions which have the characteristics of bounds and locality. Using this type of network, a many-to-one function is synthesized over the domain of the input space by a number of kernel functions. In this network, we have to estimate the necessary number of kernel functions as well as the parameters associated with kernel functions. For this purpose, a new method of parameter estimation in which linear learning rule is applied between hidden and output layers while nonlinear (piecewise-linear) learning rule is applied between input and hidden layers, is considered. The linear learning rule updates the output weights between hidden and output layers based on the Linear Minimization of Mean Square Error (LMMSE) sense in the space of kernel functions while the nonlinear learning rule updates the parameters of kernel functions based on the gradient of the actual output of network with respect to the parameters (especially, the shape) of kernel functions. This approach of parameter adaptation provides near optimal values of the parameters associated with kernel functions in the sense of minimizing mean square error. As a result, the suggested nonparametric estimation provides an efficient way of function approximation from the view point of the number of kernel functions as well as learning speed.

  • PDF

Smart Thermostat based on Machine Learning and Rule Engine

  • Tran, Quoc Bao Huy;Chung, Sun-Tae
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.2
    • /
    • pp.155-165
    • /
    • 2020
  • In this paper, we propose a smart thermostat temperature set-point control method based on machine learning and rule engine, which controls thermostat's temperature set-point so that it can achieve energy savings as much as possible without sacrifice of occupants' comfort while users' preference usage pattern is respected. First, the proposed method periodically mines data about how user likes for heating (winter)/cooling (summer) his or her home by learning his or her usage pattern of setting temperature set-point of the thermostat during the past several weeks. Then, from this learning, the proposed method establishes a weekly schedule about temperature setting. Next, by referring to thermal comfort chart by ASHRAE, it makes rules about how to adjust temperature set-points as much as low (winter) or high (summer) while the newly adjusted temperature set-point satisfies thermal comfort zone for predicted humidity. In order to make rules work on time or events, we adopt rule engine so that it can achieve energy savings properly without sacrifice of occupants' comfort. Through experiments, it is shown that the proposed smart thermostat temperature set-point control method can achieve better energy savings while keeping human comfort compared to other conventional thermostat.

Subgroup Discovery Method with Internal Disjunctive Expression

  • Kim, Seyoung;Ryu, Kwang Ryel
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.1
    • /
    • pp.23-32
    • /
    • 2017
  • We can obtain useful knowledge from data by using a subgroup discovery algorithm. Subgroup discovery is a rule model learning method that finds data subgroups containing specific information from data and expresses them in a rule form. Subgroups are meaningful as they account for a high percentage of total data and tend to differ significantly from the overall data. Subgroup is expressed with conjunction of only literals previously. So, the scope of the rules that can be derived from the learning process is limited. In this paper, we propose a method to increase expressiveness of rules through internal disjunctive representation of attribute values. Also, we analyze the characteristics of existing subgroup discovery algorithms and propose an improved algorithm that complements their defects and takes advantage of them. Experiments are conducted with the traffic accident data given from Busan metropolitan city. The results shows that performance of the proposed method is better than that of existing methods. Rule set learned by proposed method has interesting and general rules more.

Application of Fuzzy Algorithm with Learning Function to Nuclear Power Plant Steam Generator Level Control

  • Park, Gee-Yong-;Seong, Poong-Hyun;Lee, Jae-Young-
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.1054-1057
    • /
    • 1993
  • A direct method of fuzzy inference and a fuzzy algorithm with learning function are applied to the steam generator level control of nuclear power plant. The fuzzy controller by use of direct inference can control the steam generator in the entire range of power level. There is a little long response time of fuzzy direct inference controller at low power level. The rule base of fuzzy controller with learning function is divided into two parts. One part of the rule base is provided to level control of steam generator at low power level (0%∼30% of full power). Response time of steam generator level control at low power level with this rule base is shown generator level control at low power level with this rule base is shown to be shorter than that of fuzzy controller with direct inference.

  • PDF

Self-Organized Reinforcement Learning Using Fuzzy Inference for Stochastic Gradient Ascent Method

  • K, K.-Wong;Akio, Katuki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.96.3-96
    • /
    • 2001
  • In this paper the self-organized and fuzzy inference used stochastic gradient ascent method is proposed. Fuzzy rule and fuzzy set increase as occasion demands autonomously according to the observation information. And two rules(or two fuzzy sets)becoming to be similar each other as progress of learning are unified. This unification causes the reduction of a number of parameters and learning time. Using fuzzy inference and making a rule with an appropriate state division, our proposed method makes it possible to construct a robust reinforcement learning system.

  • PDF

An Integrated Method for Generating Inductive Rule Sets (결합적 방법에 의한 귀납법칙 집합의 생성)

  • Lee, Chang-Hwan
    • The KIPS Transactions:PartB
    • /
    • v.10B no.1
    • /
    • pp.27-32
    • /
    • 2003
  • The rule induction system generates a set of inductive rules, and the task of selecting an optimal rule subset is one of the important problem in the area of rule induction. This paper proposes a new learning method which combines rule induction system with the paradigm of genetic algorithm. This paper shows that genetic algorithm can be effectively applied to optimal rule selection problem. The proposed system was evaluated using a set of different machine learning data sets and, showed better performance in all cases than other traditional methods.

A Study on Accuracy Estimation of Service Model by Cross-validation and Pattern Matching

  • Cho, Seongsoo;Shrestha, Bhanu
    • International journal of advanced smart convergence
    • /
    • v.6 no.3
    • /
    • pp.17-21
    • /
    • 2017
  • In this paper, the service execution accuracy was compared by ontology based rule inference method and machine learning method, and the amount of data at the point when the service execution accuracy of the machine learning method becomes equal to the service execution accuracy of the rule inference was found. The rule inference, which measures service execution accuracy and service execution accuracy using accumulated data and pattern matching on service results. And then machine learning method measures service execution accuracy using cross validation data. After creating a confusion matrix and measuring the accuracy of each service execution, the inference algorithm can be selected from the results.

A Study on the Implementation of Modified Hybrid Learning Rule (변형하이브리드 학습규칙의 구현에 관한 연구)

  • 송도선;김석동;이행세
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.12
    • /
    • pp.116-123
    • /
    • 1994
  • A modified Hybrid learning rule(MHLR) is proposed, which is derived from combining the Back Propagation algorithm that is known as an excellent classifier with modified Hebbian by changing the orginal Hebbian which is a good feature extractor. The network architecture of MHLR is multi-layered neural network. The weights of MHLR are calculated from sum of the weight of BP and the weight of modified Hebbian between input layer and higgen layer and from the weight of BP between gidden layer and output layer. To evaluate the performance, BP, MHLR and the proposed Hybrid learning rule (HLR) are simulated by Monte Carlo method. As the result, MHLR is the best in recognition rate and HLR is the second. In learning speed, HLR and MHLR are much the same, while BP is relatively slow.

  • PDF