• Title/Summary/Keyword: rule extraction

Search Result 201, Processing Time 0.026 seconds

Extraction of Expert Knowledge Based on Hybrid Data Mining Mechanism (하이브리드 데이터마이닝 메커니즘에 기반한 전문가 지식 추출)

  • Kim, Jin-Sung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.6
    • /
    • pp.764-770
    • /
    • 2004
  • This paper presents a hybrid data mining mechanism to extract expert knowledge from historical data and extend expert systems' reasoning capabilities by using fuzzy neural network (FNN)-based learning & rule extraction algorithm. Our hybrid data mining mechanism is based on association rule extraction mechanism, FNN learning and fuzzy rule extraction algorithm. Most of traditional data mining mechanisms are depended ()n association rule extraction algorithm. However, the basic association rule-based data mining systems has not the learning ability. Therefore, there is a problem to extend the knowledge base adaptively. In addition, sequential patterns of association rules can`t represent the complicate fuzzy logic in real-world. To resolve these problems, we suggest the hybrid data mining mechanism based on association rule-based data mining, FNN learning and fuzzy rule extraction algorithm. Our hybrid data mining mechanism is consisted of four phases. First, we use general association rule mining mechanism to develop an initial rule base. Then, in the second phase, we adopt the FNN learning algorithm to extract the hidden relationships or patterns embedded in the historical data. Third, after the learning of FNN, the fuzzy rule extraction algorithm will be used to extract the implicit knowledge from the FNN. Fourth, we will combine the association rules (initial rule base) and fuzzy rules. Implementation results show that the hybrid data mining mechanism can reflect both association rule-based knowledge extraction and FNN-based knowledge extension.

Neural network rule extraction for credit scoring

  • Bart Baesens;Rudy Setiono;Lille, Valerina-De;Stijn Viaene
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2001.01a
    • /
    • pp.128-132
    • /
    • 2001
  • In this paper, we evaluate and contrast four neural network rule extraction approaches for credit scoring. Experiments are carried our on three real life credit scoring data sets. Both the continuous and the discretised versions of all data sets are analysed The rule extraction algorithms, Neurolonear, Neurorule. Trepan and Nefclass, have different characteristics, with respect to their perception of the neural network and their way of representing the generated rules or knowledge. It is shown that Neurolinear, Neurorule and Trepan are able to extract very concise rule sets or trees with a high predictive accuracy when compared to classical decision tree(rule) induction algorithms like C4.5(rules). Especially Neurorule extracted easy to understand and powerful propositional if -then rules for all discretised data sets. Hence, the Neurorule algorithm may offer a viable alternative for rule generation and knowledge discovery in the domain of credit scoring.

  • PDF

Rule Extraction from Neural Networks : Enhancing the Explanation Capability

  • Park, Sang-Chan;Lam, Monica-S.;Gupta, Amit
    • Journal of Intelligence and Information Systems
    • /
    • v.1 no.2
    • /
    • pp.57-71
    • /
    • 1995
  • This paper presents a rule extraction algorithm RE to acquire explicit rules from trained neural networks. The validity of extracted rules has been confirmed using 6 different data sets. Based on experimental results, we conclude that extracted rules from RE predict more accurately and robustly than neural networks themselves and rules obtained from an inductive learning algorithm do. Rule extraction algorithm for neural networks are important for incorporating knowledge obtained from trained networks into knowledge based systems. In lieu of this, the proposed RE algorithm contributes to the trend toward developing hybrid and versatile knowledge-based system including expert systems and knowledge-based decision su, pp.rt systems.

  • PDF

Prediction of User Preferred Cosmetic Brand Based on Unified Fuzzy Rule Inference

  • Kim, Jin-Sung
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2005.11a
    • /
    • pp.271-275
    • /
    • 2005
  • In this research, we propose a Unified Fuzzy rule-based knowledge Inference Systems UFIS) to help the expert in cosmetic brand detection. Users' preferred cosmetic product detection is very important in the level of CRM. To this Purpose, many corporations trying to develop an efficient data mining tool. In this study, we develop a prototype fuzzy rule detection and inference system. The framework used in this development is mainly based on two different mechanisms such as fuzzy rule extraction and RDB (Relational DB)-based fuzzy rule inference. First, fuzzy clustering and fuzzy rule extraction deal with the presence of the knowledge in data base and its value is presented with a value between $0\∼1$. Second, RDB and SQL(Structured Query Language)-based fuzzy rule inference mechanism provide more flexibility in knowledge management than conventional non-fuzzy value-based KMS(Knowledge Management Systems)

  • PDF

A Study on the Hybrid Data Mining Mechanism Based on Association Rules and Fuzzy Neural Networks (연관규칙과 퍼지 인공신경망에 기반한 하이브리드 데이터마이닝 메커니즘에 관한 연구)

  • Kim Jin Sung
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2003.05a
    • /
    • pp.884-888
    • /
    • 2003
  • In this paper, we introduce the hybrid data mining mechanism based in association rule and fuzzy neural networks (FNN). Most of data mining mechanisms are depended in the association rule extraction algorithm. However, the basic association rule-based data mining has not the learning ability. In addition, sequential patterns of association rules could not represent the complicate fuzzy logic. To resolve these problems, we suggest the hybrid mechanism using association rule-based data mining, and fuzzy neural networks. Our hybrid data mining mechanism was consisted of four phases. First, we used general association rule mining mechanism to develop the initial rule-base. Then, in the second phase, we used the fuzzy neural networks to learn the past historical patterns embedded in the database. Third, fuzzy rule extraction algorithm was used to extract the implicit knowledge from the FNN. Fourth, we combine the association knowledge base and fuzzy rules. Our proposed hybrid data mining mechanism can reflect both association rule-based logical inference and complicate fuzzy logic.

  • PDF

Prediction of User's Preference by using Fuzzy Rule & RDB Inference: A Cosmetic Brand Selection

  • Kim, Jin-Sung
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.5 no.4
    • /
    • pp.353-359
    • /
    • 2005
  • In this research, we propose a Unified Fuzzy rule-based knowledge Inference Systems (UFIS) to help the expert in cosmetic brand detection. Users' preferred cosmetic product detection is very important in the level of CRM. To this purpose, many corporations trying to develop an efficient data mining tool. In this study, we develop a prototype fuzzy rule detection and inference system. The framework used in this development is mainly based on two different mechanisms such as fuzzy rule extraction and RDB (Relational DB)-based fuzzy rule inference. First, fuzzy clustering and fuzzy rule extraction deal with the presence of the knowledge in data base and its value is presented with a value between 0 -1. Second, RDB and SQL (Structured Query Language)-based fuzzy rule inference mechanism provide more flexibility in knowledge management than conventional non-fuzzy value-based KMS (Knowledge Management Systems).

Intelligent Query Analysis using Fuzzy Association Rule (퍼지 연관규칙을 이용한 지능적 질의해석)

  • Kim, Mi-Hye
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.6
    • /
    • pp.2214-2218
    • /
    • 2010
  • Association rule is one of meaning and useful extraction methods from large amounts of data, and furnish useful information to user for data describing a pattern or similarity among attributes in database. Association rule have been studied about existence and nonexistence rule in boolean database. In this paper, we propose an intelligent query system using fuzzy association rule by extraction association rule changing a quantitative attribute data to a nominal attribute value.

Efficient Extraction of Hierarchically Structured Rules Using Rough Sets

  • Lee, Chul-Heui;Seo, Seon-Hak
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.4 no.2
    • /
    • pp.205-210
    • /
    • 2004
  • This paper deals with rule extraction from data using rough set theory. We construct the rule base in a hierarchical granulation structure by applying core as a classification criteria at each level. When more than one core exist, the coverage is used for the selection of an appropriate one among them to increase the classification rate and accuracy. In Addition, a probabilistic approach is suggested so that the partially useful information included in inconsistent data can be contributed to knowledge reduction in order to decrease the effect of the uncertainty or vagueness of data. As a result, the proposed method yields more proper and efficient rule base in compatability and size. The simulation result shows that it gives a good performance in spite of very simple rules and short conditionals.

An Auto Fuzzy Rule-base Extraction Method using Genetic Algorithm (유전자 알고리즘을 이용한 자동 퍼지규칙 추출 방식)

  • 박진성;손동설;임중규;정경권;이현관
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.10a
    • /
    • pp.1003-1006
    • /
    • 2003
  • This paper proposed An auto fuzzy rule-base extraction method using genetic algorithm. The suggested method is an auto fuzzy rule-base extration method neither expert advise fuzzy rule-base nor trial and error fuzzy rule-base. In order to confirm the validity of proposed method, we have applicated dc motor control and confirmed effective.

  • PDF

Development of Automatic Rule Extraction Method in Data Mining : An Approach based on Hierarchical Clustering Algorithm and Rough Set Theory (데이터마이닝의 자동 데이터 규칙 추출 방법론 개발 : 계층적 클러스터링 알고리듬과 러프 셋 이론을 중심으로)

  • Oh, Seung-Joon;Park, Chan-Woong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.6
    • /
    • pp.135-142
    • /
    • 2009
  • Data mining is an emerging area of computational intelligence that offers new theories, techniques, and tools for analysis of large data sets. The major techniques used in data mining are mining association rules, classification and clustering. Since these techniques are used individually, it is necessary to develop the methodology for rule extraction using a process of integrating these techniques. Rule extraction techniques assist humans in analyzing of large data sets and to turn the meaningful information contained in the data sets into successful decision making. This paper proposes an autonomous method of rule extraction using clustering and rough set theory. The experiments are carried out on data sets of UCI KDD archive and present decision rules from the proposed method. These rules can be successfully used for making decisions.