• Title/Summary/Keyword: rubble-mound

Search Result 177, Processing Time 0.021 seconds

3D-Numerical Simulation of Wave Pressure Acting on Caisson and Wave Characteristics near Tip of Composite Breakwater (혼성방파제의 케이슨에 작용하는 파압과 선단 주변에서 파랑특성에 관한 3차원수치시뮬레이션)

  • Choi, Goon-Ho;Jun, Jae-Hyoung;Lee, Kwang-Ho;Kim, Do-Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.3
    • /
    • pp.180-201
    • /
    • 2020
  • It has been widely known that the effect of diffracted waves at the tip of composite breakwater with finite length causes the change of standing wave height along the length of breakwater, the spatial change of wave pressure on caisson, and the occurrence of meandering damage on the different sliding distance in sequence. It is hard to deal with the spatial change of wave force on trunk of breakwater through the two-dimensional experiment and/or numerical analysis. In this study, two and three-dimensional numerical techniques with olaFlow model are used to approach the spatial change of wave force including the impulsive breaking wave pressure applied to trunk of breakwater, the effect of rear region, and the occurrence of diffracted waves at the tip of caisson located on the high crested rubble mound. In addition, it is thoroughly studied the mean wave height, mean horizontal velocity, and mean turbulent kinetic energy through the numerical analysis. In conclusion, it is confirmed that the larger wave pressure occurs at the front wall of caisson around the still water level than the original design conditions when it generates the shock-crushing wave pressure checked by not two-dimensional analysis, but three-dimensional analysis through the change of wave pressure applied to the caisson along the length of breakwater.

Calculation of Stability Number of Tetrapods Using Weights and Biases of ANN Model (인공신경망 모델의 가중치와 편의를 이용한 테트라포드의 안정수 계산 방법)

  • Lee, Jae Sung;Suh, Kyung-Duck
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.28 no.5
    • /
    • pp.277-283
    • /
    • 2016
  • Tetrapod is one of the most widely used concrete armor units for rubble mound breakwaters. The calculation of the stability number of Tetrapods is necessary to determine the optimal weight of Tetrapods. Many empirical formulas have been developed to calculate the stability number of Tetrapods, from the Hudson formula in 1950s to the recent one developed by Suh and Kang. They were developed by using the regression analysis to determine the coefficients of an assumed formula using the experimental data. Recently, software engineering (or machine learning) methods are introduced as a large amount of experimental data becomes available, e.g. artificial neural network (ANN) models for rock armors. However, these methods are seldom used probably because they did not significantly improve the accuracy compared with the empirical formula and/or the engineers are not familiar with them. In this study, we propose an explicit method to calculate the stability number of Tetrapods using the weights and biases of an ANN model. This method can be used by an engineer who has basic knowledge of matrix operation without requiring knowledge of ANN, and it is more accurate than previous empirical formulas.

Sonar System Application for detection of underwater work space boundary using seabed type underwater equipments (착저형 수중장비를 이용한 수중작업 시 작업경계면 인식을 위한 소나시스템 활용법)

  • Shin, Changjoo;Jang, In-Sung;Won, Deokhee;Seo, Jung-min;Baek, Won-Dae;Kim, Kihun;KIM, JONG HOON
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.10
    • /
    • pp.678-684
    • /
    • 2016
  • The detection of an underwater work space boundary is very important when an underwater construction is carried out using seabed type underwater equipment, such as underwater machines for rubble mound leveling, because it can induce industrial disasters. Therefore, divers are needed to mark the underwater work space boundary. A nylon rope is used to improve the convenience during an underwater diver's work. The results showed that the work space boundary can be detected using a sonar system. Using these results, an efficient method to detect the underwater work space boundary can be obtained when an underwater construction is carried out using seabed type underwater equipment.

Numerical Simulation of Wave Pressure Acting on Caisson and Wave Characteristics near Tip of Composite Breakwater (for One Directional Irregular Waves) (혼성방파제 케이슨에 작용하는 파압과 선단 주변에서 파랑특성에 관한 수치모의(일방향불규칙파에 대해))

  • Jun, Jae-Hyoung;Choi, Goon-Ho;Lee, Kwang-Ho;Kim, Do-Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.6
    • /
    • pp.531-552
    • /
    • 2020
  • In the previous study, both the wave characteristics at the tip of composite breakwater and on caisson were investigated by applying olaFlow numerical model of three-dimensional regular waves. In this paper, the same numerical model and layout/shape of composite breakwater as applied the previous study under the action of one directional irregular waves were used to analyze two and three-dimensional spatial change of wave force including the impulsive breaking wave pressure applied to trunk of breakwater, the effect of rear region, and the occurrence of diffracted waves at the tip of caisson located on the high crested rubble mound. In addition, the frequency spectrum, mean significant wave height, mean horizontal velocity, and mean turbulent kinetic energy through the numerical analysis were studied. In conclusion, the larger wave pressure occurs at the front wall of caisson around the still water level than the original design conditions when it generates the shock-crushing wave pressure in three-dimensional analysis condition. Which was not occurred by two-dimensional analysis. Furthermore, it was confirmed that the wave pressure distribution at the caisson changes along the length of breakwater when the same significant incident wave was applied to the caisson. Although there is difference in magnitude, but its variation shows the similar tendency with the case of previous study.

Calibration of Load and Resistance Factors for Breakwater Foundation Design. Application on Different Types of Superstructures (방파제 기초설계를 위한 하중저항계수의 보정(다른 형식의 상부구조 적용))

  • Huh, Jungwon;Doan, Nhu Son;Mac, Van Ha;Dang, Van Phu;Kim, Dong Hyawn
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.33 no.6
    • /
    • pp.287-292
    • /
    • 2021
  • Load and resistance factor design is an efficient design approach that provides a system of consistent design solutions. This study aims to determine the load and resistance factors needed for the design of breakwater foundations within a probabilistic framework. In the study, four typical types of Korean breakwaters, namely, rubble mound breakwaters, vertical composite caisson breakwaters, perforated caisson breakwaters, and horizontal composite breakwaters, are investigated. The bearing capacity of breakwater foundations under wave loading conditions is thoroughly examined. Two levels of the target reliability index (RI) of 2.5 and 3.0 are selected to implement the load and resistance factors calibration using Monte Carlo simulations with 100,000 cycles. The normalized resistance factors are found to be lower for the higher target RI as expected. Their ranges are from 0.668 to 0.687 for the target RI of 2.5 and from 0.576 to 0.634 for the target RI of 3.0.

The Phase Difference Effects on 3-D Structure of Wave Pressure Acting on a Composite Breakwater (혼성방파제에 작용하는 3차원 파압구조에 미치는 위상차의 영향)

  • Hur, Dong-Soo;Yeom, Gyeong-Seon;Bae, Ki-Seong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5B
    • /
    • pp.563-572
    • /
    • 2006
  • In designing the coastal structures, the accurate estimation of wave forces on them is very important. Recently, the empirical formulae such as Goda formula are widely used to estimate wave forces, as well as 2-D hydraulic and numerical model tests. But, sometimes, these estimation methods mentioned above seem to be unreasonable to predict 3-D structure of wave pressure on the coastal structures with 3-D plane arrangement in the real coastal area. Especially, in case of consideration of phase difference at harbor and seaward sides of the large-sized coastal structures like a composite breakwater, it is easily expected that the real wave pressures on each section of coastal structure have 3-D distribution. A new numerical model of 3-D Large Eddy Simulation, which is applicable to permeable structure, is developed to clarify the 3-D structure of wave pressures acting on coastal structure. The calculated wave forces on 3-D structure installed on the submerged breakwater show in good agreement with the measured values. In this study, the composite breakwater is adopted as a representative structure among the large-sized coastal structures and the 3-D structure of wave pressures on it is discussed in relation to the phase difference at harbor and seaward sides of it due to wave diffraction and transmitted wave through rubble mound.

Numerical Analysis of Block Type Quay Wall with Piles for Restraining Horizontal Deformation (말뚝 결합 블록식 안벽의 수평변위 억제에 대한 수치해석 연구)

  • Soon-Goo Kwon;Won-Hyo Lee;Tae-Hyung Kim
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.35 no.6
    • /
    • pp.155-163
    • /
    • 2023
  • A two-dimensional numerical analysis was performed on the depth of pile embedment, the magnitude of the residual water level, and the condition of the presence or absence of cap concrete to understand the behavior of the block-type quay wall with piles. The results showed the control effect of the lateral displacement of the quay wall depending on the embedment of the pile. When the piles were not embedded, the lateral displacement of the quay wall increased proportionally as the residual water level difference increased. In contrast, when the piles were embedded into the ground, the control of the lateral displacement of the quay wall was greatly exerted even if the residual water level difference increased. There was little difference in the lateral displacement of the block-type quay wall regardless of the presence or absence of cap concrete. Under the condition where the piles were embedded down to the rubble mound layer, the piles exhibited the rotational behavior seen in the short piles. As the embedment depth of the piles increased, the piles showed the same bending behavior as the intermediate piles. Thus, the piles significantly contribute to the control of lateral displacement in the block-type quay wall with piles.