• Title/Summary/Keyword: rubber waste

Search Result 145, Processing Time 0.024 seconds

Study on Recycling of Waste Rubbers as Medium Components for Hydroponic Culture of Rose (장미 양액재배 배지의 구성요소로서 폐고무의 재활용에 관한 연구)

  • 김진국;이형규;정병용;황승재
    • Resources Recycling
    • /
    • v.9 no.3
    • /
    • pp.46-53
    • /
    • 2000
  • Recently, the efficient disposal of the waste rubber is necessary due to increasing amount of the waste rubbers. In this paper, method of recycling waste rubbers as components of medium for hydroponic rose culture was suggested. We investigated growth of rose, and macro- and micro-elements, pH and EC of the media amended with waste rubber, In the beginning of culture, stress symptoms such as thin brittle stem and incipient wilting were observed, but they disappeared in a few weeks. Concentration of $Zn^{2+}$ in media at flowering increased in proportion to contents of waste tire in the media. pH of media at flowering were in the range of 5.70 to 6.35. Rose growth in all media, except in wasterock wool mixed with EPDM powder at 9:3 ratio, was normal and equivalent to the control in terms of stem length, number of stems harvested and fresh weight.

  • PDF

Assessment of lightweight recycled crumb rubber-cement composite produced by preplaced method

  • Shah, Syed Nasir;Mo, Kim Hung;Yap, Soon Poh;Putra, Azma;Othman, Muhammad Nur
    • Advances in concrete construction
    • /
    • v.11 no.5
    • /
    • pp.409-417
    • /
    • 2021
  • The incorporation of non-biodegradable tyre waste in cement-based material has gained more interest towards sustainable construction these days. Crumb rubber (CR) from waste tyre is an alternative for sand replacement in low strength applications. Many researchers have studied CR cement-based materials produced by normal mixing (NM) method and reported a significant decrease in compressive strength due to CR. To compensate this strength loss, this research aims to study the innovative incorporation of CR in cement composite via the preplaced mixing (PM) method. In this investigation, cement composite was produced with NM and PM methods by replacing sand with 0%, 50%, and 100% CR by volume. The test results showed no significant difference in terms of densities of cement composite prepared with both mixing methods. However, cement composite prepared with PM method had lower strength reduction (about 10%) and lowered drying shrinkage (about 20%). In addition, the sound absorption coefficient and noise reduction coefficient of CR cement composite prepared by PM method were in similar range as those prepared with NM method. Overall, the results demonstrate that the PM method is promising, and the maximum replacement level of 50% is recommended for CR in the cement composite.

A Study on Synthesis and Antimicrobial Activity of Rubber Mat (고무 매트의 합성 및 항미생물 활성에 관한 연구)

  • Kim, Ki-Jun;Sung, Ki-Chun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.21 no.4
    • /
    • pp.327-334
    • /
    • 2004
  • Cysteine-silver complexes were prepared and investigated the antimicrobial activity on rubber mat manufactured with waste rubber. We are exposed to harmful bacteria and fungi all the time. We manufactured antimicrobial mat to be imposed to mats that it can prevent generation of bacteria and microorganisms, and restrict their reproduction. Infection of medical devices causes significant morbidity and mortality. For aim of this study, we measured the antimicrobial mat manufactured with cysteine-Ag complex by CCD, FT-IR and NMR. The effect of mole ratio of cysteine-Ag complex on antimicrobial activity to bacteria and fungi is investigated. Reduction rate is evaluated using the Quinn method. Antimicrobial activity of complex on mole ratio 1:4 was effectively inhibited. The complexes had a better antibacterial activity than antifungal activity on rubber mat.

Preparation and Properties of Polyorganosiloxane Modified Maleated EPDM/EPDM Rubber Vibration Isolator (Polyorganosiloxane 변성 말레화 EPDM/EPDM 방진고무의 제조와 그 특성)

  • Kang, Doo-Whan;Kim, So-Mi
    • Applied Chemistry for Engineering
    • /
    • v.21 no.5
    • /
    • pp.581-585
    • /
    • 2010
  • The surface of Alnico, one of the industrial dust waste, was treated with 1,3,5-trivinyl-1,3,5-trimethylcyclotrisilazane (VMS) as a surface treating agent and used as the filler for vibration isolator rubber. Maleated EPDM prepared from bulk polymerization of EPDM with maleic anhydride was copolymerized with ${\alpha},{\omega}$-bis(3-aminopropyl)polydimethylsiloxane to obtain maleated EPDM-polydimethylsiloxane copolymer (MEPDM-PDMS). EPDM/Alnico/MEPDM-PDMS vibration isolator rubber was prepared from compounding with Alnico treated with surface treating agent, 25 and 50 phrs to EPDM, respectvely based on 1 to 10 wt% of MEPDM-PDMS to EPDM. From the measurement of the thermal properties to the rubber, the glass transition temperatures (Tg) for the rubber containing maleated EPDM-PDMS copolymer was slightly lower temperature, $33^{\circ}C$ than EPDM rubber, and also DMA results showed higher tan ${\delta}$ peak to the rubber prepared from compounding with EPDM-PDMS copolymer. From the results, rubber prepared using EPDM-PDMS copolymer had better vibration isolator property.

Characteristics Studies of Waste Tire Rubber Powders using the Different Grinding Methods (분쇄 방식에 따른 폐타이어 고무분말의 특성 연구)

  • Park, Jong-Moon;An, Ju-Young;Bang, Daesuk;Kim, Bong-Seok;Oh, Myung-Hoon
    • Resources Recycling
    • /
    • v.23 no.3
    • /
    • pp.44-50
    • /
    • 2014
  • In this study, a method of shear crushing and a two-stage disk mill were introduced to grind the waste tire powder. Rubber chips with various size were obtained during the crushing or grinding step. The two-stage disk mill was composed of two drum-type blades rotating at various speed and in opposite directions. Therefore, more roughly surfaced particles of micronized waste tire powder were obtained using shear crushing rather than using conventional cutting crushing. In this study, the shape of shear-crushed waste tire particles was compared with conventional cutting crushing particles by scanning electron microscope. In addition, the particle size analyzer was employed to determine the appropriate particle size of waste ground tire powders obtained in this study.

Mechanical Properties of Plastic Waste/Cellulose Waste Composites (폐플라스틱/폐섬유소 복합체의 기계적 물성)

  • Hong, Young-Keun
    • Elastomers and Composites
    • /
    • v.38 no.1
    • /
    • pp.19-26
    • /
    • 2003
  • Mechanical properties of the commingled waste plastics filled with waste newspaper were studied. To improve adhesion at the interface, abietic acid was used. Tensile strength increased with fiber concentration. However the abietic acid did not have any influence on the strength. Tensile strain and impact strength as well decreased with increasing fiber level in the composite, but the abietic acid at low level of concentration with low level of fiber dramatically improved both properties. The reason seemed to be attributed to double-chemical nature of abietic acid.

Mechanical Properties of Hot Mix Crumb Rubber Modified Asphalt Concrete Using Waste Tire (폐타이어 재활용 아스팔트 콘크리트의 역학적 특성)

  • 김낙석;이우열
    • Resources Recycling
    • /
    • v.7 no.2
    • /
    • pp.53-58
    • /
    • 1998
  • Wheel tracking and ravelling tests were conducted on the hot mix crumb rubber modified asphalt concrete usmg waste tire t to evaluate the mechanical prope$\pi$ies in comparison with conventional asphalt concrete. According to the test results, the m modified product, lias superior to the conventional one by 50% in the resistance of permanent deformation and by 15% in the m resistance of dmability. The experimental results should recommend thut the waste tir$\xi$ is positively recycled for asphak concrete.

  • PDF

Fabrication of Rubber Block by using Recycled Waste Tires (폐타이어 재활용 고무보도블럭의 제조에 관한 연구)

  • 김진국
    • Resources Recycling
    • /
    • v.4 no.4
    • /
    • pp.70-75
    • /
    • 1995
  • Waste tires arc used as landifill, combustion and recycling. Rccenllg. lhc recycling of waste tires received a great attentmu fiam all industries. Thc rccgcling methods for w s l e tires are classified inla three culegoljz, a whole tirc, cmmb rubha and energy. T h ~ ssl iidy invesligvled the pruduclion ol Lhc ruhhcr block by using clumh cubbel oI wasle Ires. The process 01 manulacluring the ~uhher block was co~lsislerl ol several slepc: collecting lilts, ctuilnng and grinding hrcs, mixing crumh ruhher wlth bmder. and shaping under heat and pressure The effccl ol binder on ll~e ~uecl~ilnicaplr opcrlics o l r uhher hlock war also investigalcd. The economic feaqihility of a surface treiilmcnl and multilayas on the rubber block was dclcimincd

  • PDF

Modeling the mechanical properties of rubberized concrete using machine learning methods

  • Miladirad, Kaveh;Golafshani, Emadaldin Mohammadi;Safehian, Majid;Sarkar, Alireza
    • Computers and Concrete
    • /
    • v.28 no.6
    • /
    • pp.567-583
    • /
    • 2021
  • The use of waste materials as a binder or aggregate in the concrete mixture is a great step towards sustainability in the construction industry. Waste rubber (WR) can be used as coarse and fine aggregates in concrete and improves the crack resistance, impact resistance, and fatigue life of the produced concrete. However, the mechanical properties of rubberized concrete degrade significantly by replacing the natural aggregate with WR. To have accurate estimations of the mechanical properties of rubberized concrete, two machine learning methods consisting of artificial neural network (ANN) and neuro-fuzzy system (NFS) were served in this study. To do this, a comprehensive dataset was collected from reliable literature, and two scenarios were addressed for the selection of input variables. In the first scenario, the critical ratios of the rubberized concrete and the concrete age were considered as the input variables. In contrast, the mechanical properties of concrete without WR and the percentage of aggregate volume replaced by WR were assumed as the input variables in the second scenario. The results show that the first scenario models outperform the models proposed by the second scenario. Moreover, the developed ANN models are more reliable than the proposed NFS models in most cases.

A Study on the Mechanical and Rheological Properties of the Recycled Polyethylene Composites with Ground Waste Tire Powder (재생 폴리에틸렌/폐타이어 분말 복합체의 기계적 특성 및 유변학적 특성에 관한 연구)

  • Kye, H.;Shin, K.;Bang, D.
    • Elastomers and Composites
    • /
    • v.41 no.2
    • /
    • pp.97-107
    • /
    • 2006
  • The recycled polyethylene composites with various ratio of ground waste tire powder were manufactured by using a fully intermeshing co-rotating twin screw extruder for the reuse of waste tire scrap. In this investigation, the ground waste tire powders (GWTP) were blended with virgin HDPE and recycled polyethylene in the weight ratio of 0 to 50 wt.%. Mechanical properties such as tensile strength, elongation at break and impact strength were measured by using ASTM standard. The experimental results for the various composite showed that the tensile strength of composites decreased with increasing GWTP ratio, while elongation at break increased with the amounts of GWTP. On the other hand, the impact strength for the three kinds of composites showed maximum at the 30 wt.% of GWTP and then decreased. Morphology of the fracture surface tends to be rough with increasing waste tire powder content. Rheological properties were investigated by measuring the shear viscosity against shear rates and softening temperatures. They showed that melt viscosity of rubber composites in this study subsequently increased with increasing GWTP content as a result of increase of flow resistance against external stress and followed a Power-law behavior.