• Title/Summary/Keyword: rubber composites

Search Result 1,688, Processing Time 0.024 seconds

Change of Crystalline Properties of Poly(ethylene-co-vinyl acetate) according to the Microstructures

  • Choi, Sung-Seen;Chung, Yu Yeon
    • Elastomers and Composites
    • /
    • v.56 no.2
    • /
    • pp.92-99
    • /
    • 2021
  • Microstructure-dependent changes in the crystalline properties of poly(ethylene-co-vinyl acetate) (EVA) was investigated using various EVAs at different VA contents via X-ray diffraction (XRD). The parameters analyzed herein were percentage crystallinity (Xc), interplanar crystal spacing (dhkl), crystal stack size (Dhkl), and the number of crystal plane piles (Nhkl). The Xcs of [110] and [200] crystals were 21.0-4.1 and 6.7-1.4%, respectively, and they decreased by approximately 2.3 and 0.7% for every mol% of the VA content, respectively. The Xc ratios of the [110] and [200] crystals were approximately 3. The d110s and d200s values were 0.41-0.42 and 0.37-0.38 nm, respectively. The D110s and D200s values were 9.56 -21.92 and 7.00-16.42 nm, respectively. The dhkls increased with an increase in the VA content, whereas the Dhkls decreased. The N110s and N200s were 22.7-51.3 and 18.3-43.2, respectively, and they decreased by increasing the VA content. EVA with the same VA content showed different crystalline properties as per the suppliers, and some EVAs deviated from the average trends. This could be explained by the difference in their microstructures such as the sizes and distribution uniformity of the ethylene sequences in EVA chains.

An Insight Into the Recycling of Waste Flexible Polyurethane Foam Using Glycolysis

  • Woo Seok Jin;Pranabesh Sahu;Gyuri Kim;Seongrok Jeong;Cheon Young Jeon;Tae Gyu Lee;Sang Ho Lee;Jeong Seok Oh
    • Elastomers and Composites
    • /
    • v.58 no.1
    • /
    • pp.32-43
    • /
    • 2023
  • The worldwide use of polyurethane foam products generates large amounts of waste, which in turn has detrimental effects on the surroundings. Hence, finding an economical and environmentally friendly way to dispose of or recycle foam waste is an utmost priority for researchers to overcome this problem. In that sense, the glycolysis of waste flexible polyurethane foam (WFPF) from automotive seat cushions using different industrial-grade glycols and potassium hydroxide as a catalyst to produce recovered polyol was investigated. The effect of different molecular weight polyols, catalyst concentration, and material ratio (PU foam: Glycols) on the reaction conversion and viscosity of the recovered polyols was determined. The obtained recovered polyols are obtained as single or split-phase reaction products. Besides, the foaming characteristics and physical properties such as cell morphology, thermal stability, and compressive stress-strain nature of the regenerated flexible foams based on the recovered polyols were discussed. It was observed that the regenerated flexible foams displayed good seating comfort properties as a function of hardness, sag factor, and hysteresis loss compared to the reference virgin foam. With the growing demand for a sustainable and circular economy, a global valorization of glycolysis products from polyurethane scraps can be realized by transforming them into profitable substances.

Fused Deposition Modeling of Iron-alloy using Carrier Composition

  • Harshada R. Chothe;Jin Hwan Lim;Jung Gi Kim;Taekyung Lee;Taehyun Nam;Jeong Seok Oh
    • Elastomers and Composites
    • /
    • v.58 no.1
    • /
    • pp.44-56
    • /
    • 2023
  • Additive manufacturing (AM) or three-dimensional (3D) printing of metals has been drawing significant attention due to its reliability, usefulness, and low cost with rapid prototyping. Among the various AM technologies, fused deposition modeling (FDM) or fused filament fabrication is receiving much interest because of its simple manufacturing processing, low material waste, and cost-effective equipment. FDM technology uses metal-filled polymer filaments for 3D printing, followed by debinding and sintering to fabricate complex metal parts. An efficient binder is essential for producing polymer filaments and the thermal post-processing of printed objects. This study involved an in-depth investigation of and a fabrication route for a novel multi-component binder system with steel alloy powder (45 vol.%) ranging from filament fabrication and 3D printing to debinding and sintering. The binder system consisted of polyvinyl pyrrolidone (PVP) as a binder and thermoplastic polyurethane (TPU) and polylactic acid (PLA) as a carrier. The PVP binder held the metal components tightly by maintaining their stoichiometry, and the TPU and PLA in the ratio of 9:1 provided flexibility, stiffness, and strength to the filament for 3D printing. The efficacy of the binder system was examined by fabricating 3D-printed cubic structures. The results revealed that the thermal debinding and sintering processes effectively removed the binder/carrier from the cubic structures, resulting in isotropic shrinkage of approximately 15.8% in all directions. The scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) patterns displayed the microstructure behavior, phase transition, and elemental composition of the 3D cubic structure.

Impact Absorption Performance of Multi-layered Composite Structures based on Material-Structure Optimization (소재-구조 최적화 기반 다층-복합재료구조 충격흡수성능)

  • Kim, Byung-Jo;Kim, Tae-Won
    • Composites Research
    • /
    • v.22 no.3
    • /
    • pp.66-73
    • /
    • 2009
  • Total thickness, areal density and mass moment of inertia of materials are important material factors for structural characteristics. In this work, a material-structural optimization was performed up to the maximum ballistic limit of multi-layered composite structures under high impact velocity followed by the investigation of the influence of these factors on an impact absorption performance. A unified model combined with Florence's and Awerbuch-Bonder's models was used in optimizing the multi-layered composite structure consisting of CMC, rubber, aluminum and Al-foam. Total thickness, areal density and mass moment of inertia were used for the optimization constraint. As shown in the results, the ballistic limit determined from a newly developed unified model was closely similar to the finite clement analysis. Additionally, the ballistic limit and impact absorption energy obtained by the optimized structure were improved approximately 16.8% and 26.7%, respectively comparing with a not optimized multi-layered structure.

Phase Equilibrium Study on the Ternary System of SBR/EPDM/Solvent (SBR, EPDM 및 Solvent로 이루어진 삼성분계의 상 평형에 관한 연구)

  • Go, Jin-Hwan;Park, Byung-Ho
    • Elastomers and Composites
    • /
    • v.37 no.4
    • /
    • pp.211-216
    • /
    • 2002
  • The polymer-polymer interaction parameter, x 23t, of the styrene-butadiene polymer (SBR) and ethylene-propylene-diene terpolymer (EPDM) was investigated by observing the phase behavior of the ternary system of SBR/EPDM/solvent. The solvent used in this study was benzene acting as a good solvent for SBR but as a poor solvent for EPDM. Ternary solutions with various concentrations and mixing ratios of the two component polymers were separated into two phases by temperature change The cloud point curves (CPC) showed that the differerence of solvent affinities toward each polymer and the repulsive interaction between two polymers considerably affect the shape of CPC near 15℃. In the temperature range of 5℃ ~ 25℃, incompatible behaviours arised from both the difference of mixing ratios and concentration were clearly observed. Also the phase separation temperature greatly influenced on the composition of each separated phase. The calculated x 23t values from Flory-Huggins theory were in the range of 0.6301 ~ 1.0775, which suggest that the SBR/EPDM systems are incompatible.

Accelerated Thermal Aging Test for Predicting Lifespan of Urethane-Based Elastomer Potting Compound

  • Min-Jun Gim;Jae-Hyeon Lee;Seok-Hu Bae;Jung-Hwan Yoon;Ju-Ho Yun
    • Elastomers and Composites
    • /
    • v.59 no.2
    • /
    • pp.73-81
    • /
    • 2024
  • In the field of electronic components, the potting material, which is a part of the electronic circuit package, plays a significant role in protecting circuits from the external environment and reducing signal interference among electronic devices during operation. This significantly affects the reliability of the components. Therefore, the accurate prediction and assessment of the lifespan of a material are of paramount importance in the electronics industry. We conducted an accelerated thermal aging evaluation using the Arrhenius technique on elastic potting material developed in-house, focusing on its insulation, waterproofing, and contraction properties. Through a comprehensive analysis of these properties and their interrelations, we confirmed the primary factors influencing molding material failure, as increased hardness is related to aggregation, adhesion, and post-hardening or thermal-aging-induced contraction. Furthermore, when plotting failure times against temperature, we observed that the hardness, adhesive strength, and water absorption rate were the predominant factors up to 120 ℃. Beyond this temperature, the tensile properties were the primary contributing factors. In contrast, the dielectric constant and loss tangent, which are vital for reducing signal interference in electric devices, exhibited positive changes(decreases) with aging and could be excluded as failure factors. Our findings establish valuable correlations between physical properties and techniques for the accurate prediction of failure time, with broad implications for future product lifespans. This study is particularly advantageous for advancing elastic potting materials to satisfy the stringent requirements of reliable environments.

Studies on the Reinforced Effect of Rubber Elastomer by means of Milled Glass Fiber Treated with Silane Coupling Agents (Silane Coupling제(劑) 처리(處理) Glass Fiber에 의(依)한 탄성체(彈性體)의 보강효과(補强效果)에 관(關)한 연구(硏究))

  • Lee, Sang-Hyun;Yoo, Chong-Sun;Paik, Nam-Chul
    • Elastomers and Composites
    • /
    • v.22 no.3
    • /
    • pp.204-212
    • /
    • 1987
  • The purpose of this study is to investigate the reinforced effect between MGF treated silane coupling agents and rubber matrix under the configuration chemical bonds, also the effect of triazine thiol compounds. For this study, vulcanizates were prepared with fifteen different compounding formulas. Their vulcanization characteristics, physical properties were examined by means of the ODR(Oscillating Dist Rheometer), the tensile tester, the benzene swelling test. The results of this study obtained are as follows: 1. In the ODR test, the MA vulcanizate was the fastest one in terms of having reached to optimum cure time($t_{90}$) and, with the same formula, when MGF vulcanizates, the shortest optimum cure times has appeared. 2. The SA, SC vulcanizates were the best the other in the physical properties such as 100%modulus, 200%modulus, 300%modulus, tensile strength. The SB vulcanizate, with higher density of crosslinking than other vulcanizates. The vulcanizates, which were filled with MGF treated with silane coupling agents we were the higher density of crosslinking than vulcanizates filled with MGF only. 3. In aging properties, the silica vulcanizates appeared to be better than the other vulcanizates. The aging Properties of treated MGF vulcanizates were similar to the silica vulcanizates. The(CR+APS+silica) and(CR+APS+MCF) were easily crosslinked by exposure to the air, and the physical properties have been improved.

  • PDF

Miscibility Improvement in PP and EPDM Blends via Introducing Specific Interaction (특정상호작용에 의한 폴리프로필렌/EPDM 블렌드의 상용성 향상)

  • Cho, Young-Wook;Go, Jin-Hwan;Lee, Won-Ki;Lee, Jin-Kook;Cho, Won-Jei;Ha, Chang-Sik
    • Elastomers and Composites
    • /
    • v.35 no.1
    • /
    • pp.46-52
    • /
    • 2000
  • Miscibility improvement between polypropylene(PP) and ethylene-propylene-diene-terpolymer (EPDM) was studied by introducing specific interaction into both polymers. PP was modified by grafting maleic anhydride(MAH) onto backbone, leading to MAH-grafted PP(PP-g-MAH). Sulfonated EPDM ionomer neutralized with bivalent zinc cation(ZnSEPDM) was used as one component. The blends of PP-g-MAH and ZnSEPDM were prepared at $200^{\circ}C$ in Brabender Roller Mixer. Fourier transform-infrared(FT-IR) spectroscopic and dynamic mechanical studies have been performed to investigate the miscibility. FT-IR spectral peak corresponding to carbonyl group in PP-g-MAH and that to sulfonate group in ZnSEPDM were shifted to lower and higher frequency with increasing ZnSEPDM content, respectively, in the blends. Glass transition temperature of ZnSEPDM was increased up to 70wt.% of ZnSEPDM, and again decreased above 70wt.%. It can be concluded from the shift of FT-IR characteristic peaks and the changes of glass transition temperatures that the miscibility between PP and EPDM was improved via introducing specific interaction, i.e., dipole-ion interaction.

  • PDF

Synthesis and properties of PBO precursors having bulky groups and ether linkages in the main chain (주사슬에 벌키그룹과 에테르 연결고리를 갖는 PBO 전구체의 합성 및 특성)

  • Yoon, Doo-Soo;Kim, Hee-Sun;Choi, Jae-Kon;Hong, Wan-Hae
    • Elastomers and Composites
    • /
    • v.43 no.4
    • /
    • pp.271-280
    • /
    • 2008
  • Aromatic polyhydroxyamides (PHAs) having bulky groups and ether linkages in the polymer main chain were synthesized by the low temperature solution polycondensation reaction. FT-IR, $^{1}H-NMR$, DSC, and TGA were used to study the properties of these polymers. The PHAs were converted into polybenzoxazoles (PBOs) by a thermal cyclization reaction, and endothermic peaks were observed in the range of $220{\sim}400^{\circ}C$. The introduction of the ether and bulky groups in the main chain improved the solubility of the PHAs in aprotic solvents such as DMSO and DMF, but the PBOs were nearly insoluble in common solvents. All the PBOs, except for PBO 5 with 2,6-dimethylphenoxy pendant and 2,3-dihydroxyquinoxaline ring, and PBO 6 with 2,6-dimethylphenoxy pendant and 2,3-dihydroxyquinoxaline ring, exhibited $T_g's$ in the range from 149 to $217^{\circ}C$ by DSC. The thermogravimetric analyses indicated that most of the PBOs were thermally stable up to $400^{\circ}C$ in nitrogen. Maximum weight loss temperatures of PHA 5 and PBO 5 with 2,6-dimethylphenoxy pendant and 2,3-dihydroxyquinoxaline ring were $707^{\circ}C$ and $683^{\circ}C$, respectively, which were the hightest temperatures among the corresponding copolymers. The PBOs in nitrogen exhibited relatively high char yields in the range of $63{\sim}70%$ at $900^{\circ}C$.

Preparation and Characterization of Removal-type Acrylic Pressure-Sensitive Adhesive (4원 아크릴계 박리형 점착제의 제조와 특성에 관한 연구)

  • Seo, Young-Ok;Seul, Soo-Duk
    • Elastomers and Composites
    • /
    • v.36 no.4
    • /
    • pp.225-236
    • /
    • 2001
  • In order to improve the properties of the copolymer and the terpolymer that was used as removal-type pressure sensitive adhesive(PSA), we synthesized quaterpolymer with the variation of the types of monomer, initiator, and solvent, and concentration, the monomer/solvent ratio, reaction temperature and time. and determined the properties of this adhesive: the viscosity, molecular weight, conversion, solid content and structure of polymer. The prepared polymer was crosslinked by changing the type of crosslinking agent and concentration, and then we investigated the characteristics or adhesive such as peel adhesion, shear adhesion, heat resistance, weathering resistance and peel adhesion to aging. The optimum performance of RA/2- EHA/MMA/2-HEMA as a PSA were obtained when benzoyl peroxide was used as an initiator with the reactant mixture consisted of 80% BA and 2-EHA, 15%, MMA, and 5% 2-HFMA. The optimum reaction temperature and time were $80^{\circ}C$ and 8 hours, respectively. For BA/2-EHA/MMA/AA, the optimum performance was obtained when the polymerization was performed at the monomer composition of 80% BA/2-EHA, 15% MMA, and 5% AA. BPO was used as initiator and the optimum reaction temperature and time were identical to those of BA/2-EHA/MMA/ 2-HEMA. Isocyanate and melamine were used to crosslink BA/2-EHA/MMA/2-HEMA and BA/2-EHA/MMA/AA, respectively. No effect on the type of cross-linking agent on the peel adhesion was observed with aging. The quarterpolymers crosslinked with melamine left residues on the counter surface after weathering resistance test, while the polymers crosslinked with isocyanate did not.

  • PDF