Browse > Article
http://dx.doi.org/10.7473/EC.2021.56.2.92

Change of Crystalline Properties of Poly(ethylene-co-vinyl acetate) according to the Microstructures  

Choi, Sung-Seen (Department of Chemistry, Sejong University)
Chung, Yu Yeon (Department of Chemistry, Sejong University)
Publication Information
Elastomers and Composites / v.56, no.2, 2021 , pp. 92-99 More about this Journal
Abstract
Microstructure-dependent changes in the crystalline properties of poly(ethylene-co-vinyl acetate) (EVA) was investigated using various EVAs at different VA contents via X-ray diffraction (XRD). The parameters analyzed herein were percentage crystallinity (Xc), interplanar crystal spacing (dhkl), crystal stack size (Dhkl), and the number of crystal plane piles (Nhkl). The Xcs of [110] and [200] crystals were 21.0-4.1 and 6.7-1.4%, respectively, and they decreased by approximately 2.3 and 0.7% for every mol% of the VA content, respectively. The Xc ratios of the [110] and [200] crystals were approximately 3. The d110s and d200s values were 0.41-0.42 and 0.37-0.38 nm, respectively. The D110s and D200s values were 9.56 -21.92 and 7.00-16.42 nm, respectively. The dhkls increased with an increase in the VA content, whereas the Dhkls decreased. The N110s and N200s were 22.7-51.3 and 18.3-43.2, respectively, and they decreased by increasing the VA content. EVA with the same VA content showed different crystalline properties as per the suppliers, and some EVAs deviated from the average trends. This could be explained by the difference in their microstructures such as the sizes and distribution uniformity of the ethylene sequences in EVA chains.
Keywords
poly(ethylene-co-vinyl acetate); crystalline properties; microstructures; X-ray diffraction;
Citations & Related Records
연도 인용수 순위
  • Reference
1 P. Cebe, D. Thomas, J. Merfeld, B. P. Partlow, D. L. Kaplan, R. G. Alamo, A. Wurm, E. Zhuravlev, and C. Schick, "Heat of fusion of polymer crystals by fast scanning calorimetry", Polymer, 126, 240 (2017).   DOI
2 N. S. Murthy and H. Minor, "General procedure for evaluating amorphous scattering and crystallinity from X-ray diffraction scans of semicrystalline polymers", Polymer, 31, 996, (1990).   DOI
3 S. Bistac and J. Schultz, "Influence of tensile deformation on the crystalline organization of ethylene copolymers", J. Macromol. Sci. B Phys., 38, 663 (1999).   DOI
4 X. M. Shi, J. Zhang, J. Jin, and S. J. Chen, "Non-isothermal crystallization and melting of ethylene-vinyl acetate copolymers with different vinyl acetate contents", Exp. Polym. Lett., 2, 623 (2008).   DOI
5 W. Zhang, D. Chen, Q. Zhao, and Y. Fang, "Effects of different kinds of clay and different vinyl acetate content on the morphology and properties of EVA/clay nanocomposites", Polymer, 44, 7953 (2003).   DOI
6 V. Pasanovic-Zujo, R. K. Gupta, and S. N. Bhattacharya, "Effect of vinyl acetate content and silicate loading on EVA nanocomposites under shear and extensional flow", Rheol. Acta, 43, 99 (2004).   DOI
7 Y. Kong and J.N. Hay, "The enthalpy of fusion and degree of crystallinity of polymers as measured by DSC", Eur. Polym. J., 39, 1721 (2003).   DOI
8 I. A. M. Al-Raheil and A. M. Okaz, "Chain-folding in polyethylene lamellar structure", Polym. Int., 28, 261 (1992).   DOI
9 S. Bistac, P. Kunemann, and J. Schultz, "Crystalline modifications of ethylene-vinyl acetate copolymers induced by a tensile drawing: effect of the molecular weight", Polymer, 39, 4875 (1998).   DOI
10 S. Patel, D. R. Nelson, and A. G. Gibbs, "Chemical and physical analyses of wax ester Properties", J. Insect Sci., 1, 4 (2001).   DOI
11 M. Alexandre, G. Beyer, C. Henrist, R. Cloots, A. Rulmont, R. Jerome, and P. Dubois, "Preparation and properties of layered silicate nanocomposites based on ethylene vinyl acetate copolymers", Macromol. Rapid Commun., 22, 643 (2001).   DOI
12 C. Schneider, R. Langer, D. Loveday, and D. Haire, "Applications of ethylene vinyl acetate copolymers (EVA) in drug delivery systems", J. Control. Rel., 262, 284 (2017).   DOI
13 J. E. K. Schawe, "Remarks regarding the determination of the initial crystallinity by temperature modulated DSC", Thermochim. Acta, 657, 151 (2017).   DOI
14 H. A. Khonakdar, S. H. Jafari, A. Haghighi-Asl, U. Wagenknecht, L. Haeussler, and U. Reuter, "Thermal and mechanical properties of uncrosslinked and chemically crosslinked polyethylene/ethylene vinyl acetate copolymer blends", J. Appl. Polym. Sci., 103, 3261 (2007).   DOI
15 K. A. Moly, H. J. Radusch, R. Androsh, S. S. Bhagawan, and S. Thomas, "Nonisothermal crystallisation, melting behavior and wide angle X-ray scattering investigations on linear low density polyethylene (LLDPE)/ethylene vinyl acetate (EVA) blends: effects of compatibilisation and dynamic crosslinking", Eur. Polym. J., 41, 1410 (2005).   DOI
16 C. Motta, "The effect of copolymerization on transition temperature of polymeric materials, J. Therm. Anal., 49, 461 (1997).   DOI
17 A. Marcilla, J. A. Reyes-Labarta, and F. J. Sempere, "DSC kinetic study of the transitions involved in the thermal treatment of polymers. Methodological considerations", Polymer, 42, 5343 (2001).   DOI
18 W. Stark and M. Jaunich, "Investigation of ethylene/vinyl acetate copolymer (EVA) by thermal analysis DSC and DMA", Polym. Test., 30, 236 (2011).   DOI
19 Y. Chen, H. Zou, M. Liang, and Y. Cao, "Melting and crystallization behavior of partially miscible high densitypolyethylene/ethylene vinyl acetate copolymer (HDPE/EVA) blends", Thermochim. Acta, 586, 1 (2014).   DOI
20 X. Ju, M. Bowden, E. E. Brown, and X. Zhang, "An improved X-ray diffraction method for cellulose crystallinity measurement", Carb. Polym., 123, 476 (2015).   DOI
21 T. H. Lee, F. Y. C. Boey, and K. A. Khor, "X-ray diffraction analysis technique for determining the polymer crystallinity in a polyphenylene sulfide composite", Polym. Compos., 16, 481 (1995).   DOI
22 J. D. Hoffman and R. L. Miller, "Kinetic of crystallization from the melt and chain folding in polyethylene fractions revisited: theory and experiment", Polymer, 38, 3151 (1997).   DOI
23 X. M. Shi, J. Zhang, D. R. Li, and S. J. Chen, "Effect of damp-heat aging on the structures and properties of ethylene-vinyl acetate copolymers with different vinyl acetate contents", J. Appl. Polym. Sci., 112, 2358 (2009).   DOI
24 K. Agroui, A. Maallemi, M. Boumaour, G. Collins, and M. Salama, "Thermal stability of slow and fast cure EVA encapsulant material for photovoltaic module manufacturing process", Sol. Energy Mater. Sol. Cells, 90, 2509 (2006).   DOI
25 H. Varghese, T. Johnson, S. S. Bhagawan, S. Joseph, S. Thomas, and G. Groeninckx, "Dynamic mechanical behavior of acrylonitrile butadiene rubber/poly(ethylene-co-vinyl acetate) blends", J. Polym. Sci. B: Polym. Phys., 40, 1556 (2002).   DOI
26 V. Chevallier, M. Bouroukba, D. Petitjean, M. Dirand, J. Pauly, J. L. Daridon, and V. Ruffier-Meray, "Crystallization of a multiparaffinic wax in normal tetradecane", Fuel, 79, 1743 (2000).   DOI
27 H. S. Ashbaugh, A. Radulescu, R. K. Prudhomme, D. Schwahn, D. Richter, and L. J. Fetters, "Interaction of paraffin wax gels with random crystalline/amorphous hydrocarbon copolymers", Macromolecules, 35, 7044 (2002).   DOI
28 S-S Choi and Y. Y. Chung, "Simple analytical method for determination of microstructures of poly(ethylene-co-vinyl acetate) using the melting points", Polym. Test., 90, 106706 (2020).   DOI
29 J. Zhang, C. Wu, W. Li, Y. Wang, and Z. Han, "Study on performance mechanism of pour point depressants with differential scanning calorimeter and X-ray diffraction methods", Fuel, 82, 1419 (2003).   DOI
30 D. L. Dorset and B. K. Annis, "Lamellar order and the crystallization of linear chain solid solutions", Macromolecules, 29, 2969 (1996).   DOI