• Title/Summary/Keyword: rubber composite

Search Result 416, Processing Time 0.031 seconds

The Matching Condition Design of Three Kinds of Ferrite/Rubber Composite Microwave Absorber according to the Constitutional Rate (조성비에 따른 3종 페라이트/고무 복합형 전파흡수체의 정합조건 설계)

  • 유영준;양윤석;전홍배;김철한;김한근;사공건
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.247-250
    • /
    • 1999
  • In this study, three kinds of Mn-Zn ferrite/Ni-Zn ferrite/$Ni_2Y$ ferroxplana prepared by the coprecipitation method was compounded with silicon rubber, and thereafter made ring-type specimens with various compositional ratio. The material constant of ferrite/rubber composite absorbers was obtaibed by the 2-port method. The material constants of the ferrite/rubber composite absorber with various compositional ratio of three kinds of ferrite were used to design the matching frequency and thickness with the impedance matching map. We were able to predict the matching condition from the design method.

  • PDF

Assessment of lightweight recycled crumb rubber-cement composite produced by preplaced method

  • Shah, Syed Nasir;Mo, Kim Hung;Yap, Soon Poh;Putra, Azma;Othman, Muhammad Nur
    • Advances in concrete construction
    • /
    • v.11 no.5
    • /
    • pp.409-417
    • /
    • 2021
  • The incorporation of non-biodegradable tyre waste in cement-based material has gained more interest towards sustainable construction these days. Crumb rubber (CR) from waste tyre is an alternative for sand replacement in low strength applications. Many researchers have studied CR cement-based materials produced by normal mixing (NM) method and reported a significant decrease in compressive strength due to CR. To compensate this strength loss, this research aims to study the innovative incorporation of CR in cement composite via the preplaced mixing (PM) method. In this investigation, cement composite was produced with NM and PM methods by replacing sand with 0%, 50%, and 100% CR by volume. The test results showed no significant difference in terms of densities of cement composite prepared with both mixing methods. However, cement composite prepared with PM method had lower strength reduction (about 10%) and lowered drying shrinkage (about 20%). In addition, the sound absorption coefficient and noise reduction coefficient of CR cement composite prepared by PM method were in similar range as those prepared with NM method. Overall, the results demonstrate that the PM method is promising, and the maximum replacement level of 50% is recommended for CR in the cement composite.

Extraction Methods of Organic Components from Rubber Composites and Analysis of the Extract Using Gas Chromatography/Mass Spectrometry

  • Chae, Eunji;Choi, Sung-Seen
    • Elastomers and Composites
    • /
    • v.54 no.3
    • /
    • pp.188-200
    • /
    • 2019
  • Rubber articles contain various organic additives such as antidegradants, curing agents, and processing aids. It is important to extract and analyze these organic additives. In this paper, various extraction methods of organic additives present in rubber composites were introduced (solvent extraction, Soxhlet extraction, headspace extraction, and solid-phase microextraction), and the extracts were characterized using gas chromatography/mass spectrometry (GC/MS). Solvent and Soxhlet extractions are easy-to-perform and commonly used methods. Efficiency of solvent extraction varies according to the type of solvent used and the extraction conditions. Soxhlet extraction requires a large volume of solvent. Headspace sampling is suitable for extracting volatile organic compounds, while solid-phase extraction is suitable for extracting specific chemicals. GC/MS is generally used for characterizing the extract of a rubber composite because most components of the extract are volatile and have low molecular weights. Identification methods of chemical structures of the components separated by GC column were also introduced.

Functionalized Emulsion Styrene-Butadiene Rubber Containing Diethylaminoethyl Methacrylate for Silica Filled Compounds

  • Park, Jinwoo;Kim, Kihyun;Lim, Seok-Hwan;Hong, Youngkun;Paik, Hyun-jong;Kim, Wonho
    • Elastomers and Composites
    • /
    • v.50 no.2
    • /
    • pp.110-118
    • /
    • 2015
  • In this study, diethylaminoethyl methacrylate-styrene-butadiene terpolymer (DEAEMA-SBR), in which diethylaminoethyl methacrylate (DEAEMA) was introduced to the SBR molecule as a third monomer, was synthesized by cold emulsion polymerization. It is expected that amine group introduced to a rubber molecule would improve dispersion of silica by the formation of hydrogen bond (or ionic coupling) between the amine group and silanol groups of silica surface. The chemical structure of DEAEMA-SBR was analyzed using proton nuclear magnetic resonance spectroscopy (H-NMR), Fourier transform infrared spectroscopy (FTIR), gel permeation chromatography (GPC) and differential scanning calorimetry (DSC). Then, various properties of DEAEMA-SBR/silica composite such as crosslink density, bound rubber content, abrasion resistance, and mechanical properties were evaluated. As a result, bound rubber content and crosslink density of DEAEMA-SBR/silica compound were higher than those of the SBR 1721 composite. Abrasion resistance and moduli at 300% elongation of the DEAEMA-SBR/silica composite were better than those of SBR 1721 composite due to the high bound rubber content and crosslink density. These results are attributed to high affinity between DEAEMA-SBR and silica. The proposed study suggests that DEAEMA-SBR can help to improve mechanical properties and abrasion resistance of the tire tread part.

A Study on Rubber-Ferrite Composite for Electromagentic Absorber (전파흡수체용 Rubber-Ferrite Composite에 관한 연구)

  • 김동일;박연준;박재석
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 1996.09a
    • /
    • pp.111-116
    • /
    • 1996
  • To realize the RF layer of Rubber Ferrite-Air-Solid Ferrite(RF-A-F) that proposed by Y.Naito it is tried to grasp the formulation of composition by varying the ratio of mole and element of Complex Isotropic Ferrite Nix-A0.1-Zn(1-x-0.1)*Fe2O4 As a result it was found that the characteristics of the electromagnetic wave absorber constructed by the selected formulation of compositionin in RF-A-F type were improved.

  • PDF

Spectroscopic and Mechanical Properties of Nano Silica Rubber Composite Material

  • Lee, Jung Kyu;Park, Juyun;Kang, Yong-Cheol;Koh, Sung Wi
    • Journal of Integrative Natural Science
    • /
    • v.9 no.1
    • /
    • pp.62-66
    • /
    • 2016
  • To manipulate the mechanical properties of acrylonitrile butadiene rubber (NBR), addition of nano-sized silica on rubber was performed and nano-silica NBR composite (NSR) materials were fabricated by press molding. The effect of volume fraction of silica in the NSR on the spectroscopic and mechanical properties has been studied.

Large deformation analysis of inflated air-spring shell made of rubber-textile cord composite

  • Tran, Huu Nam;Tran, Ich Thinh
    • Structural Engineering and Mechanics
    • /
    • v.24 no.1
    • /
    • pp.31-50
    • /
    • 2006
  • This paper deals with the mechanical behaviour of the thin-walled cylindrical air-spring shell (CAS) made of rubber-textile cord composite (RCC) subjected to different types of loading. An orthotropic hyperelastic constitutive model is presented which can be applied to numerical simulation for the response of biological soft tissue and of the nonlinear anisotropic hyperelastic material of the CAS used in vibroisolation of driver's seat. The parameters of strain energy function of the constitutive model are fitted to the experimental results by the nonlinear least squares method. The deformation of the inflated CAS is calculated by solving the system of five first-order ordinary differential equations with the material constitutive law and proper boundary conditions. Nonlinear hyperelastic constitutive equations of orthotropic composite material are incorporated into the finite strain analysis by finite element method (FEM). The results for the deformation analysis of the inflated CAS made of RCC are given. Numerical results of principal stretches and deformed profiles of the inflated CAS obtained by numerical deformation analysis are compared with experimental ones.

Preparation of Silicone Rubber Membrane and its Porosity (Silicone Rubber Membrane의 제조 및 기공특성)

  • Lee, Seung-Bum;Kim, Hyung-Jin;Hong, In-Kwon
    • Elastomers and Composites
    • /
    • v.30 no.3
    • /
    • pp.185-194
    • /
    • 1995
  • Membrane process has been employed to separate a specific substance from gas or liquid mixture, and treat wastewater. This is due to the fact that the substance of mixture can be permeated and separated selectively by membrane. Since Initial equipment and operation costs are not expensive, membrane process has been adopted in various fields such as petroleum Industry, chemistry, polymer, electronics, foods, biochemical industry and wastewater treatment. In this study, $CaCO_3$ particles impregnated in silicone rubber network were extracted by using supercritical carbon dioxide and pore distribution of silicone $rubber-CaCO_3$ was investigated with varying amount of extract. Silicone rubber has excellent mechanical properties such as heat-resistance, cold-resistance etc. and $CaCO_3$ has microporous structure. It is possible to make silicone $rubber-CaCO_3$ composite sheets via work-intensive kneading processes. In so doing $CaCO_3$ particles become distributed and impregnated in silicone rubber network. Supercritical carbon dioxide diffuse through composite sample, then sample is swollen. $CaCO_3$ in silicone rubber network Is dissolved in supercritical carbon dioxide, and its sites become pores. Pore distribution, pore shape and surface area are observed by SEM(scanning electron microscope) micrograph and BET surface area analyzer examination respectively. Pore characteristics of membrane suggest the possibilities that the membrane can be used for process of mixture separation and wastewater treatment.

  • PDF

Effect of Carbon Addition and Influence of Heat-treatment Temperature on Electromagnetic Wave Absorbing Properties of $Ni_{0.5}Cu_{0.1}Zn_{0.4}Fe_2O_4$-Rubber Composite ($Ni_{0.5}Cu_{0.1}Zn_{0.4}Fe_2O_4$ Ferrite-Rubber Composite의 전파흡수특성에 미치는 열처리 온도의 영향 및 Carbon 첨가효과)

  • 윤국태;이찬규;박연준
    • Journal of the Korean Magnetics Society
    • /
    • v.11 no.1
    • /
    • pp.14-20
    • /
    • 2001
  • The structure, shape, size, and magnetic properties of Ni$_{0.5}$Cu$_{0.1}$Zn$_{0.4}$Fe$_2$O$_4$ have been investigated as a function of annealing temperatures. In order to control the microwave absorbing properties of ferrite-rubber composite and the complex losses (magnetic loss and conduction loss), the effect of carbon addition was also studied. It was found that the coercive force decreased with increasing heat-treatment temperatures. Relative complex permeability and reflection loss were measured by the network analyzer. As a result, the natural resonance occurred in the low frequency tinge, and the matching frequency of the ferrite-rubber composite prepared at 130$0^{\circ}C$ was found to be lower. As heat-treatment temperatures were increased, the magnetic loss ($\mu$$_{r}$", $\mu$$_{r}$′) and the dielectric loss ($\varepsilon$$_{r}$"/$\varepsilon$$_{r}$′) were increased. It was caused that the absorption characteristics of the absorber were improved. The conduction loss and magnetic loss were expected to be occurred together because two matching frequencies were shown with carbon addition. It was confirmed that the matching frequency of the microwave absorber could be controlled by controlling heat-treatment temperatures and carbon additions.ons.tions.

  • PDF