Browse > Article
http://dx.doi.org/10.13160/ricns.2016.9.1.62

Spectroscopic and Mechanical Properties of Nano Silica Rubber Composite Material  

Lee, Jung Kyu (Department of Mechanical System Engineering, Pukyong National University)
Park, Juyun (Department of chemistry, Pukyong National University)
Kang, Yong-Cheol (Department of chemistry, Pukyong National University)
Koh, Sung Wi (Department of Mechanical System Engineering, Pukyong National University)
Publication Information
Journal of Integrative Natural Science / v.9, no.1, 2016 , pp. 62-66 More about this Journal
Abstract
To manipulate the mechanical properties of acrylonitrile butadiene rubber (NBR), addition of nano-sized silica on rubber was performed and nano-silica NBR composite (NSR) materials were fabricated by press molding. The effect of volume fraction of silica in the NSR on the spectroscopic and mechanical properties has been studied.
Keywords
NBR; Nano-silica; Volume Fraction; NSR;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 J. K. Lancaster, "Polymer-based bearing materials: The role of fillers and fibre reinforcement", Tribology, Vol. 5, pp. 249-255, 1972.   DOI
2 L. C. Vazquez, E. Hagel, B. J. Willenberg, W. Dai, F. Casanova, C. D. Batich, and M. Sarntinoranont, "Polymer-coated cannulas for the reduction of backflow during intraparenchymal infusions", J. Mater. Sci-Mater. M., Vol. 23, pp. 2037-2046, 2012.   DOI
3 J. R. Tarpani, O. Maluf, and M. C. A. Gatti, "Charpy impact toughness of conventional and advanced composite laminates for aircraft construction", Materials Research, Vol. 12, pp. 395-403, 2009.   DOI
4 H. W. Andresen and A. T. Echtermeyer, "Critical energy release rate for a CSM reinforced carbon fibre composite/steel bonding", Compos. Part A-Appl. S., Vol. 37, pp. 742-751, 2006.   DOI
5 J. C. Slattery, K.-B. Fu, and E.-S. Oh, "The mechanics and thermodynamics of edge fracture: the critical energy release rate, the compatibility constraint, and the bond potential", Philos. Mag., Vol. 92, pp. 1788-1802, 2012.   DOI
6 P. Yu, H. He, C. Jiang, Y. Jia, D. Wang, X. Yao, D. Jia, and Y. Luo, "Enhanced oil resistance and mechanical properties of nitrile butadiene rubber/lignin composites modified by epoxy resin", J. Appl. Polym. Sci., Vol. 133, pp. 42922, 2016.
7 H. Kim, J. Kobashi, Y. Maeda, H. Yoshida, and M. Ozaki, "Pitch-length independent threshold voltage of polymer/cholesteric liquid crystal nano-composites", Crystals, Vol. 5, pp. 302-311, 2015.   DOI
8 M. Razavizadeh and M. Jamshidi, "Adhesion of nitrile rubber (NBR) to polyethylene terephthalate (PET) fabric. Part 1: PET surface modification by methylenediphenyl di-isocyanate (MDI)", Appl. Surf. Sci., Vol. 360, pp. 429-435, 2016.   DOI
9 E. Kontou and G. Anthoulis, "The effect of silica nanoparticles on the thermomechanical properties of polystyrene", J. Appl. Polym. Sci., Vol. 105, pp. 1723-1731, 2007.   DOI
10 S. H. Lee and Y. Choi, "Effect of nano-sized oxide particles on thermal and electrical properties of epoxy silica composites", Phys. Met. Metallogr+., Vol. 115, pp. 1295-1299, 2014.   DOI
11 K. P. Sau, T. K. Chaki, and D. Khastgir, "Carbon fibre filled conductive composites based on nitrile rubber (NBR), ethylene propylene diene rubber (EPDM) and their blend", Polymer, Vol. 39, pp. 6461-6471, 1998.   DOI
12 R. L. Zhang, T. X. Li, Y. D. Huang, and L. Liu, "Effect of the clay on the thermal stability and mechanical properties of Nitrile-Butadiene Rubber (NBR)/clay nanocomposites", J. Optoelectron. Adv. M., Vol. 16, pp. 629-633, 2014.
13 H. S. Vaziri, M. Abadyan, M. Nouri, I. A. Omaraei, Z. Sadredini, and M. Ebrahimnia, "Investigation of the fracture mechanism and mechanical properties of polystyrene/silica nanocomposite in various silica contents", J. Mater. Sci., Vol. 46, pp. 5628-5638, 2011.   DOI
14 A. Masa, R. Saito, H. Saito, T. Sakai, A. Kaesaman, and N. Lopattananon, "Phenolic resin-crosslinked natural rubber/clay nanocomposites: Influence of clay loading and interfacial adhesion on strain-induced crystallization behavior", J. Appl. Polym. Sci., Vol. 133, pp. 43214, 2016.
15 G. K. White, "Thermal expansion of reference materials: copper, silica and silicon", J. Phys. D Appl. Phys., Vol. 6, pp. 2070-2078, 1973.   DOI
16 S. Choi, J. Park, E. Jeong, B. J. Kim, S. Y. Son, J. M. Lee, J. S. Lee, H. J. Jo, J. Park, and Y. C. Kang, "Deposition and XPS study of Pb, Zr, and Ti films", J. Chosun Natural Sci., Vol. 7, No. 3 pp. 183-187, 2014.   DOI
17 A. U. Alam, M. M. R. Howlader, and M. J. Deen, "Oxygen plasma and humidity dependent surface analysis of silicon, silicon dioxide and glass for direct wafer bonding", ECS J. Solid State Sc., Vol. 2, pp. P515-P523, 2013.   DOI