• Title/Summary/Keyword: rubber asphalt

Search Result 85, Processing Time 0.021 seconds

A Study on the Adhesion Performance of Acrylate Using Tack Rolling Ball Test (Tack Rolling Ball Test를 활용한 아크릴레이트의 점착 성능에 대한 연구)

  • Yoon, Jun-No;Park, Wan-Goo;Park, Jin-Sang;Choi, Su-Young;Kim, Byoung-Il;Oh, Sang-Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.11a
    • /
    • pp.173-174
    • /
    • 2018
  • In this study, the objective of this study was to evaluate the adhesive characteristics of existing self-adhesive rubber asphalt sheet, butyl sheet and acrylate sheet in a low temperature environment through Tack Rolling Ball Test to obtain basic data on acrylate. As a result of this experiment, in the case of the self-molding rubber asphalt sheet and the butyl rubber sheet, the compound of the sheet was frozen in the low temperature environment and the iron bead was separated. On the other hand, the acrylate sheet did not freeze the acrylate even at 0 ℃, It is confirmed that the measured value is shown by Ball Test.

  • PDF

Characterization of Flame-Retardant Foam Asphalt (난연성 폼아스팔트 특성에 관한 연구)

  • Hong, Young-Keun
    • Elastomers and Composites
    • /
    • v.47 no.3
    • /
    • pp.246-253
    • /
    • 2012
  • This study was carried out to prepare a type of warm mix asphalt. Through urethane foam and emulsion asphalt preparation techniques a protocol of asphalt foam was made. Then three kinds of flame retardant agents were added in there to alleviate the inherent susceptability of asphalt and foam material to flame and thus flame retardant asphalt foam was made. The internal structure of form asphalt was composed of open cell. The higher the NCO% brought the larger the cell and the stronger also. Asphalt increased the strength of the foam. Among the flame retardant agents employed tritorylphosphate was the most effective.

Development and Characterization of the Asphalt Binder with Low-heat and Crosslink Structured Additive

  • Eun Kyoung Lee;You Kyoung Kim
    • Elastomers and Composites
    • /
    • v.57 no.4
    • /
    • pp.222-230
    • /
    • 2022
  • In this study, a low-heat additive with a crosslink structure was dispersed in asphalt to simultaneously lower the production temperature of, and to modify the asphalt binder. This low-heat additive was prepared by different feeding ratios of styrene-butadiene-styrene (SBS) and polyvinylchloride (PVC) as polymer modifiers, and ZnO as a crosslinking agent. In order to confirm the crosslinking density and compatibility of the crosslink structured low-heat additive with asphalt, surface free energy, swelling ratio, differential scanning calorimetry (DSC), and scanning electron microscope (SEM) parameters were carefully investigated to examine this relationship, and the role of the crosslink structured low-heat additive. In addition, by measuring the penetration and softening point of the asphalt binder, it was confirmed that it corresponds to PG 64-22. With increasing ZnO in the crosslink structured low-heat additive, the swelling ratio decreased, leading to an increase in crosslinking density. The crosslink structured low-heat additive and the asphalt binder were found to be compatible with each other by DSC and SEM analysis.

A Study on the Stabilization of Asphalt Emulsion with Phase Inversion Emulsification Method (반전유화법에 의한 유화아스팔트의 안정성 연구)

  • Heo, Woo-Sung;Lee, Eun-Kyoung;Choi, Sei-Young
    • Elastomers and Composites
    • /
    • v.44 no.2
    • /
    • pp.143-149
    • /
    • 2009
  • In this study, asphalt emulsion was manufactured by phase inversion emulsification method with nonionic surfactants(Span 80, Span 60, Tween 80, and Tween 60), anionic surfactant(SLS) and cationic surfactant(Imidazole) in different feeding ratio to make up for the week points of asphalt. Its stabilization was carefully investigated with respect to droplet size, viscosity, zeta potential, and water-proofing property. When the surfactants mixed with nonionic and anionic surfactant were used into the asphalt, a stabilization of the asphalt emulsion was good. As the amount of the mixed surfactant was increased, the droplet size of asphalt emulsion were decreased, while the viscosity and zeta potential were increased. When the surfactants mixed with nonionic and anionic surfactant were used into the asphalt, a stabilization of asphalt emulsion was good.

Asphalt Sealant Containing the Waste Lubricant Oil (폐윤활유를 이용한 아스팔트 실란트)

  • Kim, Seog-Jun;Ko, Kum-Jin
    • Elastomers and Composites
    • /
    • v.44 no.1
    • /
    • pp.69-75
    • /
    • 2009
  • Asphalt sealants for the crack repair of asphalt concrete road were prepared using waste lubricant oil in this work. The waste lubricant oil was compounded with asphalt(AP-5), SBS triblock copolymer, a tackifying agent(petroleum resin), and antioxidants. Cone penetration, softening point, ductility, elongation by tensile adhesion, and resilience of asphalt sealant compounds were measured. Cone penetration of asphalt sealant compounds increased with the increase of waste lubricant oil content while their softening point, ductility, and resilience decreased. By the addition of talc as an extender, softening point and resilience of asphalt sealants increased, but cone penetration, ductility, and elongation by tensile adhesion of those decreased with the proportion of talc content. The most economic asphalt sealant which could pass an ASTM specification could be manufactured by the big decrement of petroleum resin content.

Effect of Moisture and Freeze-Thaw on Mechanical Properties of CRM Asphalt Mexture (폐타이어 재활용 아스팔트 혼합물의 기계적 성질에 대한 습윤과 동결 융해의 영향)

  • 김낙석;조기주
    • Resources Recycling
    • /
    • v.9 no.3
    • /
    • pp.37-45
    • /
    • 2000
  • This paper presents the experimental test results on moisture and freeze-thaw resistance of hot mix crumb rubber modified (CRM) asphalt concrete mixture. To compare the differences in mechanical properties of conventional and CRM asphalt concretes, various tests were conducted under different moisture conditions and freeze-thaw cycles. Marshall mix design was also performed to determine the optimum asphalt contents for the both asphalt concrete mixtures. Test results revealed that the moisture and freeze-thaw resistance of CRM asphalt mixture was superior to the conventional asphalt concrete. As a result, it is considered that the utilization of waste tires in asphalt pavements has the potential of minimizing the damage due to the moisture and freeze-thaw.

  • PDF

A Study in Application and Manufacture Technique of Cold-Mix Cold-Laid Type Asphalt Concrete Using of Polymer Modified Asphal (개질 아스팔트를 이용한 상온아스콘 제조 및 실용화 연구)

  • 김영근;남궁연;박유신
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.04a
    • /
    • pp.627-634
    • /
    • 1997
  • This is the Study on Application and Manufacture Technique of Cold-Mix, Cold-Laid type Asphalt Concrete using of Polymer modified asphalt the could be constructed easily and economically on damaged road repaireless for seasons. The modified materials for this study are SBS(Styrene-Butadiene-Styrene). SBR (Styrene-Butadiene-Rubber) and PUR(Polyurethane). The Marshall stability and the value of flow and resistance in water stability degree according to the alternation types and weight percent of modified materials were compared and evaluated on this study. The results of the study show that PUR modified asphalt have improvement of over 150% Marshall stability in AI MS-14 standard and they are evaluated to have the easiness of storage and better working efficiency compared with other types of modified asphalt compound.

  • PDF

Study on Inhomogeneity in Compositions of Asphalt Pavement Wear Particles Using Thermogravimetric Analysis

  • Uiyeong Jung;Sung-Seen Choi
    • Elastomers and Composites
    • /
    • v.58 no.2
    • /
    • pp.81-86
    • /
    • 2023
  • Asphalt pavements are generally composed of fine and coarse aggregates, bitumen, and modifier. Asphalt pavement wear particles (APWPs) are produced by friction between the road surface and the tire tread, and they flow into the environment such as rivers and oceans. Model APWPs were prepared and a single APWP of 212-500 (S-APWP) and 500-1000 ㎛ (L-APWP) was analyzed using thermogravimetric analysis (TGA) to investigate inhomogeneity in the compositions of the APWPs. The reference TGA thermogram was built using thermograms of the raw materials and formulation of the model asphalt pavement. The compositions of the APWPs were different from each other. Ash contents of the APWPs were lower than expected. Inhomogeneity in the total contents of bitumen and modifier was more severe than that in the other components. The inhomogeneity of the S-APWPs was more severe than that of the L-APWPs.

Modification of Asphalt by in-situ Polymerization (내부중합에 의한 아스팔트바인더 개질 연구)

  • Lee, Sang-Yum;Mun, Sung-Ho;Jin, Jung-Hoon;Hong, Young-Keun
    • Elastomers and Composites
    • /
    • v.46 no.3
    • /
    • pp.257-261
    • /
    • 2011
  • We introduce a novel method that could modify neat asphalt. A polymer-forming monomer, dimethylphenol( DMP) was added to the neat asphalt and polymerization was occurred autonomously, without adding any external catalyst for the polymerization, only with oxygen molecules in the air. The polymer produced in the asphalt was polyphenyleneoxide( PPO) and it enhanced the mechanical properties of the asphalt. Compared with the neat asphalt, the tenacity and toughness of the DMP-modified asphalt were two and half times and three times high, respectively.

Mechanical Properties of Hot Mix Crumb Rubber Modified Asphalt Concrete Using Waste Tire (폐타이어 재활용 아스팔트 콘크리트의 역학적 특성)

  • 김낙석;이우열
    • Resources Recycling
    • /
    • v.7 no.2
    • /
    • pp.53-58
    • /
    • 1998
  • Wheel tracking and ravelling tests were conducted on the hot mix crumb rubber modified asphalt concrete usmg waste tire t to evaluate the mechanical prope$\pi$ies in comparison with conventional asphalt concrete. According to the test results, the m modified product, lias superior to the conventional one by 50% in the resistance of permanent deformation and by 15% in the m resistance of dmability. The experimental results should recommend thut the waste tir$\xi$ is positively recycled for asphak concrete.

  • PDF