Browse > Article

Asphalt Sealant Containing the Waste Lubricant Oil  

Kim, Seog-Jun (Department of Nano and Chemical Engineering, Kunsan National University)
Ko, Kum-Jin (Department of Nano and Chemical Engineering, Kunsan National University)
Publication Information
Elastomers and Composites / v.44, no.1, 2009 , pp. 69-75 More about this Journal
Abstract
Asphalt sealants for the crack repair of asphalt concrete road were prepared using waste lubricant oil in this work. The waste lubricant oil was compounded with asphalt(AP-5), SBS triblock copolymer, a tackifying agent(petroleum resin), and antioxidants. Cone penetration, softening point, ductility, elongation by tensile adhesion, and resilience of asphalt sealant compounds were measured. Cone penetration of asphalt sealant compounds increased with the increase of waste lubricant oil content while their softening point, ductility, and resilience decreased. By the addition of talc as an extender, softening point and resilience of asphalt sealants increased, but cone penetration, ductility, and elongation by tensile adhesion of those decreased with the proportion of talc content. The most economic asphalt sealant which could pass an ASTM specification could be manufactured by the big decrement of petroleum resin content.
Keywords
asphalt sealant; polymer modification; crack filler; waste lubricant oil; SBS;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 G. Polacco, J. Stastna, D. Biondi, F. Antonelli, Z. Vlachovicova, and L. Zanzotto, 'Rheology of Asphalts Modified with Glycidylmethacrylate Functionalized Polymers', J. Colloid Interf. Sci., 280, 366 (2004)   DOI   ScienceOn
2 M.B. Ko and Y.K. Hong, 'Improvement of Deformation Resistancy of Asphalt by Modification with Tire Rubber', Elastomer, 43, 72 (2008)
3 K-S. Kim and Y-K. Hong, 'A Study on the Storage Stability of Waste Vinyl-Modified Asphalt', Elastomer, 43, 191 (2008)
4 M. Garcia-Morales, P. Partal, F. J. Navarro, F. Martinez-Boza, C. Gallegos, N. Gonzalez, and M. E. Munoz, 'Viscous Properties and Microstructure of Recycled EVA Modified Bitumen', Fuel, 83, 31 (2004)   DOI   ScienceOn
5 R.L. Cottingham, D.J. Thorpe, and E. Bickerstaff, 'Method of Sealing Bridge Deck Joints', US Patent 4324504 (1982)
6 Won-il Park, 'Asphalt Sealant Containing the Waste Yogurt Bottle', Thesis, Kunsan National University, 2005
7 Jehun Kim, 'Performanc Improvement of Asphalt Sealant Using LDPE', Thesis, Kunsan National University, 2001
8 Y. Yildirim, 'Polymer Modified Asphalt Binders', Construction and Building Materials, 21, 66 (2007)   DOI   ScienceOn
9 H. Ozen, A. Aksoy, S. Tayfur, and F. Celik, 'Laboratory Performance Comparison of the Elastomer-Modified Asphalt Mixtures', Building and Environment, 43, 1270 (2008)   DOI   ScienceOn
10 R. Varma, H. Takeichi, J.E. Hall, Y.F. Ozawa, and T. Kyu, 'Miscibility Studies on Blends of Kraton Block Copolymer and Asphalt', Polymer, 43, 4667 (2002)   DOI   ScienceOn
11 K-H. Chung and Y-K. Hong, 'Scrap Tire/Aggregate Composite: Composition and Primary Characterization for Pavement Material', Polymer Composites, 23, 852 (2002)   DOI   ScienceOn
12 R. Siddique, J. Khatib, and I. Kaur, 'Use of Recycled Plastic in Concrete: A Review', Waste Management, 28, 1835 (2008)   DOI   ScienceOn
13 C. Fang, T. Li, Z. Zhang, and X. Wang, 'Combined Modification of Asphalt by Waste PE and Rubber', Polymer Composites, 29, 1183 (2008)   DOI   ScienceOn
14 M. Korhonen and A. Kellomaki, 'Miscibilities of Polymers in Bitumen and Tall Oil Pitch under Different Mixing Conditions', Fuel, 75(15), 1727 (1996)   DOI   ScienceOn
15 T. Bhaskar, M.A. Uddin, A. Muto, Y. Sakata, Y. Omura, K. Kimura, and Y. Kawakami, 'Recycling of Waste Lubricant Oil into Chemical Feedstock or Fuel Oil over Supported Iron Oxide Catalysis', Fuel, 9 (2004)   DOI   ScienceOn
16 S-S. Kim and J-K. Jeon, 'Pyrolysis Characteristics of Waste Ship Lubricating Oil', J. Korean. Ind. Eng. Chem., 15, 564 (2004)
17 G.D. Airey, 'Styrene Butadiene Styrene Polymer Medication of Road Bitumens', J. Mater. Sci., 99, 951 (2004)
18 S. Kim, 'Asphalt Sealant Containing the Waste Edible Oil', Elastomer, 39, 61 (2004)
19 B. Sengoz and G. Isikyakar, 'Evaluation of the Properties and Microstructures of SBS and EVA Polymer Modified Bitumen', Construction and Building Materials, 22, 1897 (2008)   DOI   ScienceOn
20 F.R. Davis, 'Method of Modifying Asphalt with Thermoplastic Polymers, Ground Rubber and Composition Produced', US Patent 4485201 (1984)
21 J-F. Masson, P. Collins, and M. Lowery, 'Temperature Control of Hot-Poured Sealants During the Sealing of Pavement Cracks', Construction and Building Materials, 19, 423 (2005)   DOI   ScienceOn
22 A.A. Yousefi, A. Ait-Kadi, and C. Roy, 'Effect of Used-Tire-Derived Pyrolytic Oil Residue on the Properties of Polymer-Modified Asphalts', Fuel, 79, 975 (2000)   DOI   ScienceOn
23 S. Hinislioglu and E. Agar, 'Use of Waste High Density Polyethylene as Bitumen Modifier in Asphalt Concrete Mix', Materials Letters, 58, 267 (2004)   DOI   ScienceOn
24 M.J. Fuentes, R. Font, M.F. Gomez-Rico, and I. Martin-Gullon, 'Pyrolysis and Combustion of Waste Lubricant Oil from Diesel Cars: Decomposition and Pollutants', J. Anal. Appl. Pyrolysis, 79, 215 (2007)   DOI   ScienceOn
25 R. Thavasi, S. Jayalakshmi, T. Balasubramanian, and I.M. Banat, 'Biosurfactant Production by Corynebacterium Kutscheri from Waste Motor Lubricant Oil and Peanut Oil Cake', Letters in Applied Microbiology, 45, 686 (2007)   DOI   ScienceOn
26 Q. Wang, M. Liao, Y. Wang, and Y. Ren, 'Characterization of End-Functionalized Styrene-Butadiene-Styrene Copolymers and Their Application in Modified Asphalt', J. Appl. Polym. Sci., 103, 8 (2007)   DOI   ScienceOn