• 제목/요약/키워드: rotational measure

검색결과 134건 처리시간 0.022초

위치 검출기가 없는 영구자석 동기 전동기의 제어 PART1 - 표면부착형 영구자석 전동기 (Vector Control of PM Motor without any Rotational Transducer PART 1 - Surface Mounted Permanent Magnet Motor)

  • 장지훈;하정익;설승기
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제50권9호
    • /
    • pp.453-458
    • /
    • 2001
  • This paper presents a new vector control algorithm of the surface mounted permanent magnet motor (SMPMM) without any rotational tranceducer. Originally, SMPMM does not have any magnetic saliency in structure, but it has a little magnetic saliency due to the saturation by the flux of the permanent magnet. Moreover, it varies according to the load conditions and the control performance of schematics using the saliency can be easily degraded. To prevent it and to improve the performance of the proposed algorithm, the saliency of a SMPMM under various load conditions is analyzed. In the proposed algorithm, the saliency or the impedance difference related to the saliency is utilized in order to estimate the position and speed of the rotor. And the high frequency signal is injected into the motor to measure the impedance difference and also to enhance the control performance of the system. The experimental results verify the performance of the proposed sensorless algorithm.

  • PDF

저속 고토크 가혹감속기의 저비용 테스트 시스템 개발에 관한 연구 (A Study on the Low Cost Testing System Development of the Low Speed and High Torque Harsh Reducer)

  • 박태현
    • 한국산업융합학회 논문집
    • /
    • 제25권3호
    • /
    • pp.379-386
    • /
    • 2022
  • The goal of this research is to verify a performance test system for a low speed, high torque, and harsh reducer at low cost. The reducer rotates a cooling fan with a diameter of 10 meters, in a high temperature (50℃) cooling tower in a geothermal power plant. It requires about 500 kgf·m torque and 47.75 kW power to rotate the fan at a maximum power condition. An expensive dynamometer is commonly used for performance test of a motor or a reducer. In this paper, a low cost system is developed using a hydraulic pump as a load unit to generate torque instead of a dynamometer. We accurately calculated the required power, the flow meter, and the pressure of the pump, and selected to design and optimize the system at minimal cost. The system also applied another reverse reducer and a gearbox to increase the rotational speed and to reduce the torque from the low speed and high torque target reducer. This allows low-cost systems to be built using inexpensive components. The developed system was able to successfully measure the high torque and the low rotational speed of the target reducer at high temperature.

압전세라믹을 이용한 2축형 회전센서 개발 (Development of a Dual Axial Gyroscope with Piezoelectric Ceramics)

  • 류혜옥;이영진;노용래
    • 한국음향학회지
    • /
    • 제16권6호
    • /
    • pp.61-67
    • /
    • 1997
  • 압전 회전센서(Piezoelectric Gyroscope)는 물체의 회전속도를 감지하기 위한 센서로서 압전효과를 이용해 코리올리스힘(Coriolis Force)을 측정하는 센서이다. 기존에 사용되고 있는 압전 회전센서는 1축형이 주종을 이루고 있는데 비하여 본 연구에서는 한 차원 발전된 2축형의 회전센서를 고안, 제작하였다. 이러한 새로운 구조에 대한 검토 및 고찰을 위해 유한요소법 (Finite Element Method) 을 통한 동적 해석을 실시하여 구조의 타당성을 검증하고 각 설계인자 변화에 따른 센서의 특성변화를 조사하였다. 또한 그 결과를 토대로 직접 회전센서를 제작하여 그 성능을 평가, 비교하였다. 나아가 센서의 특성평가를 위한 회전 시뮬레이터를 구성한 후 정량적인 실험을 통해 제작된 센서의 반응을 조사하였으며, 그 결과 본 논문에서 개발된 2축형 센서는 두 방향의 회전력에 대한 우수한변별도 및 감도를 나타내어 새로운 형태의 회전 센서로서의 사용가능성을 확인할 수 있었다.

  • PDF

ASMs을 이용한 특징점 추출에 기반한 3D 얼굴데이터의 정렬 및 정규화 : 정렬 과정에 대한 정량적 분석 (3D Face Alignment and Normalization Based on Feature Detection Using Active Shape Models : Quantitative Analysis on Aligning Process)

  • 신동원;박상준;고재필
    • 한국CDE학회논문집
    • /
    • 제13권6호
    • /
    • pp.403-411
    • /
    • 2008
  • The alignment of facial images is crucial for 2D face recognition. This is the same to facial meshes for 3D face recognition. Most of the 3D face recognition methods refer to 3D alignment but do not describe their approaches in details. In this paper, we focus on describing an automatic 3D alignment in viewpoint of quantitative analysis. This paper presents a framework of 3D face alignment and normalization based on feature points obtained by Active Shape Models (ASMs). The positions of eyes and mouth can give possibility of aligning the 3D face exactly in three-dimension space. The rotational transform on each axis is defined with respect to the reference position. In aligning process, the rotational transform converts an input 3D faces with large pose variations to the reference frontal view. The part of face is flopped from the aligned face using the sphere region centered at the nose tip of 3D face. The cropped face is shifted and brought into the frame with specified size for normalizing. Subsequently, the interpolation is carried to the face for sampling at equal interval and filling holes. The color interpolation is also carried at the same interval. The outputs are normalized 2D and 3D face which can be used for face recognition. Finally, we carry two sets of experiments to measure aligning errors and evaluate the performance of suggested process.

Measurement of Aerosol Parameters with Altitude by Using Two Wavelength Rotational Raman Signals

  • Song, Im-Kang;Kim, Yong-Gi;Baik, Sung-Hoon;Park, Seung-Kyu;Cha, Hyung-Ki;Choi, Sung-Chul;Chung, Chin-Man;Kim, Duk-Hyeon
    • Journal of the Optical Society of Korea
    • /
    • 제14권3호
    • /
    • pp.221-227
    • /
    • 2010
  • Aerosol size distribution provides good information for predicting weather changes and understanding cloud formation. Aerosol extinction coefficient and backscattering coefficient are measured by many scientists, but these parameters depend not only on aerosol size but on aerosol concentrations. An algorithm has been developed to measure aerosol parameters such as ${\AA}$ngstr$\ddot{o}$m exponent, color ratio, and LIDAR ratio without any assumptions by using two wavelength rotational Raman LIDAR signals. These parameters are good indicators for the aerosol size. And we can find ${\AA}$ngstr$\ddot{o}$m exponent, color ratio, and LIDAR ratio under various weather conditions. Finally, it can be seen that the ${\AA}$ngstr$\ddot{o}$m exponent has an inverse relationship to the particle size of the aerosol and the color ratio is linearly dependent on the aerosol size. An ${\AA}$ngstr$\ddot{o}$m exponent from 1.2 to 3.1, a color ratio from 0.28 to 1.04, and a LIDAR ratio 66.9 sr at 355 nm and 32.6 sr at 532 nm near the cloud were obtained.

스마트폰 어플리케이션을 이용한 보행 평가 (Analysis of Walking Using Smartphone Application)

  • 정상철;이인영;윤수빈;김수연;우영근
    • PNF and Movement
    • /
    • 제13권1호
    • /
    • pp.39-46
    • /
    • 2015
  • Purpose: The accelerometer is a tool for evaluating walking by the displacement of the center of mass (COM) in the body. Recently, smartphones have added an accelerometer app, and it can be used to evaluate outcomemanures in rehabilitation. The purpose of this study was to investigate the COM in the bodies of normal persons and stroke patients using this smartphone application while walking. Methods: Twenty normal persons and twenty-two stroke patients were recruited and had their COM measured using G-walk and the smartphone application, SMAP, during 10 m walking. Subjects repeated the 10 m of walking 3 times, and we used the SMAP, Accelerometer Monitor ver. 1.5.0, to evaluate COM during the walk. To measure the displacement of COM, we used the difference in value between the maximal angle and the minimum anterior-posterior (AP), mediolateral (ML), and rotational angles during the walk. Results: For the normal persons, there was significant correlation between the AP and AP of SMAP, and was also a significant correlation between rotational angle and the ML of SMAP. In the stroke patients, there was significant correlation between AP and ML, and the rotational angle of SMAP. Conclusion: Our research results suggest that if the SMAP system is reinforced in the case of patients who have a greater displacement of COM, it may be used as an evaluation tool during walking.

Strength analysis of the driving shift gears for a 67 kW class agricultural tractor according to tire type

  • Baek, Seung Min;Kim, Wan Soo;Kim, Yeon Soo;Baek, Seung Yun;Lee, Nam Gyu;Moon, Seok Pyo;Jeon, Hyeon Ho;Choi, Young Soo;Kim, Taek Jin;Kim, Yong Joo
    • 농업과학연구
    • /
    • 제47권4호
    • /
    • pp.1147-1158
    • /
    • 2020
  • The purpose of this study was to measure the engine torque and rotational speed of a 67 kW class agricultural tractor according to tire type during plow tillage and to analyze the gear strength of the driving shift for the tractor. A field test was performed under the condition with a single tire (Test A) and dual tires (Test B) to increase the ground width of the rear tires. A load monitoring system was developed, and the engine torque and rotational speed were measured using controller area network (CAN) communication. The engine torque and rotational speed during plow tillage were calculated as the equivalent torque and speed using Palmgren Miner's rule. As a result, the equivalent torque and speed in Test A and Test B were 181.0 Nm and 1,913 rpm and 206.1 Nm and 2,130 rpm, respectively. As the ground width of the rear tire was increased, the bending stress in Test B was about 9.9 to 10.5% higher than that of the Test A, and the contact stress was about 4.6 to 4.9% higher than that of the Test A. Under all conditions, the safety factor for the bending and contact stress was 1 or more. Thus, the driving shift gears for the dual tire type are considered safe.

뇌혈관 직경측정을 위한 3차원 회전 혈관조영술의 유용성 (Usefulness of 3D Rotational Angiography for Cerebral Vascular Diameter Measurement)

  • 김승기;김상현
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제46권1호
    • /
    • pp.9-14
    • /
    • 2023
  • When measuring cerebrovascular with 3D rotational angiography, the accuracy was verified by comparing the actual size and measurement size, respectively. It is intended to help select therapeutic materials and instruments during cerebrovascular intervention by comparing the average error rates for measured values in the 3DRA and CTA methods by examining with protocols such as brain CTA, which are always performed in emergency situations. The mean error rate between the groups of measurers was ±3.655% for radiation technologist and ±3.331% for university students, and the mean error rate of the student group was within tolerance (±10%), and the independent sample T-test result t =0.879, p=0.394 (p>0.05) showed no statistically difference between the two. In addition, the average error rate measured by both groups by 3DRA was measured below ±5% within the tolerance error rate (±10%), and most of CTA was measured within the tolerance range (±10%), but showed an average error rate of up to 5.65%, and the independent sample T-test result was statistically more accurate than 3DRA. Both the 3DRA method and the brain CTA method for measuring cerebrovascular size could be accurately measured within tolerance, but it would be better to measure cerebrovascular blood vessels using a more accurate 3DRA method during cerebrovascular intervention.

우리나라와 일본의 초등학교 수학 교과서에서의 각 및 각도 지도 내용 비교 연구 (A Comparative Study on Teaching Contents for Angle and Measure of an Angle in Elementary Mathematics Textbook between Korea and Japan)

  • 박교식
    • 대한수학교육학회지:학교수학
    • /
    • 제17권1호
    • /
    • pp.35-46
    • /
    • 2015
  • 본 논문에서는 우리나라와 일본의 초등학교 수학 교과서에서의 각 및 각도 지도 내용을 비교했다. 이러한 비교로부터 다음 다섯 가지를 우리나라 초등학교 수학과 교육과정 및 그에 따른 교과서에서의 각 및 각도 지도 내용 개선을 위한 시사점으로 제시한다. 첫째, 각의 정의 방식을 재고할 필요가 있다. 초등학교 수학에서 각을 정의할 때 이외에는 반직선을 사용하는 경우가 없고, 각을 정의하는 방식과 직각을 정의하는 방식은 일관되지 않는다. 둘째, 평면도형의 이동에서 돌리기를 $90^{\circ}$, $180^{\circ}$, $270^{\circ}$, $360^{\circ}$와 관련짓는 것을 고려할 필요가 있다. 이 둘을 관련시키는 것은 5학년에서 점대칭도형을 취급하는 것과도 연결된다. 셋째, 각의 크기 비교에서 '각의 크기가 같다'를 취급할 필요가 있다. 이것은 각의 크기를 비교하면서 두 각을 겹쳐보는 활동을 해 보는 것으로 가능하다. 넷째, 회전각의 도입을 고려할 필요가 있다. 회전각으로서의 $360^{\circ}$를 취급하는 것은 사각형의 내각의 크기의 합이 $360^{\circ}$임을 설명하는 것과 관련이 있다. 다섯째, 중학교 수학과 교육과정과 연계될 필요가 있다. '평각'은 중학교에서 사용하는 용어이다. 정다각형의 내각의 크기의 합을 구하는 것도 중학교에서 취급해야 하는 내용이다.

베일러 작업 시 트랙터 소요동력 분석 (Analysis of Power Requirement of Agricultural Tractor during Baler Operation)

  • 김용주;이대현;정선옥;박승제;최창현
    • Journal of Biosystems Engineering
    • /
    • 제36권4호
    • /
    • pp.243-251
    • /
    • 2011
  • Purpose of this study was to analyze power requirement of an agricultural tractor for baler operation. First, a power measurement system was developed and installed in a 75 kW agricultural tractor. Strain-gages with a telemetry system were used to measure torques of transmission and PTO input shafts. An engine tachometer was used to measure rotational speed of transmission and PTO input shafts. The measurement system also included pressure sensors to measure pressure of hydraulic pumps, an I/O interface to acquire the sensor signals, and an embedded system to determine power requirements. Second, field experiments were conducted at two PTO speed levels, and proportion of utilization ratio of rated engine power and power consumption of major parts (transmission input shaft, PTO input shaft, main hydraulic pump, and auxiliary hydraulic pump) were analyzed. Results of usage proportion of engine power for PTO speed level 1 and 2 were 4.1 and 2.2%, 31.5 and 16.3%, 49.6 and 59.7%, 14.4 and 20.8%, and 0.4 and 1.0%, respectively, for ratio of measured engine power to rated engine power of less than 25%, 25 ~ 50%, 50 ~ 75%, 75 ~ 100%, and greater than 100%. The results showed that the usage proportion increased in the range with the ratio of power requirement to rated engine power of over than 50% when the PTO gear was shifted from P1 to P2. Averaged engine power requirement for baling operation, tying and discharging operation, and total operation were 43.3, 37.3, and 42.0 kW and 49.0, 37.0, and 47.4 kW, respectively, for PTO speed level 1 and 2. Paired t-test showed significant difference in power consumption of engine, transmission input shaft, and PTO input shaft for different PTO speed levels. Therefore, the power consumption of engine for baler operation increased when the PTO gear was shifted from P1 to P2. It was indicated that the power requirement of tractor was affected by the PTO rotational speed for baler operation.