Browse > Article
http://dx.doi.org/10.3807/JOSK.2010.14.3.221

Measurement of Aerosol Parameters with Altitude by Using Two Wavelength Rotational Raman Signals  

Song, Im-Kang (Department of Physics, Kongju National University)
Kim, Yong-Gi (Department of Physics, Kongju National University)
Baik, Sung-Hoon (Laboratory for Quantum Optics, Korea Atomic Energy Research Institute)
Park, Seung-Kyu (Laboratory for Quantum Optics, Korea Atomic Energy Research Institute)
Cha, Hyung-Ki (Laboratory for Quantum Optics, Korea Atomic Energy Research Institute)
Choi, Sung-Chul (Laboratory for Quantum Optics, Korea Atomic Energy Research Institute)
Chung, Chin-Man (Laboratory for Quantum Optics, Korea Atomic Energy Research Institute)
Kim, Duk-Hyeon (Division of Cultural Studies, Hanbat National University)
Publication Information
Journal of the Optical Society of Korea / v.14, no.3, 2010 , pp. 221-227 More about this Journal
Abstract
Aerosol size distribution provides good information for predicting weather changes and understanding cloud formation. Aerosol extinction coefficient and backscattering coefficient are measured by many scientists, but these parameters depend not only on aerosol size but on aerosol concentrations. An algorithm has been developed to measure aerosol parameters such as ${\AA}$ngstr$\ddot{o}$m exponent, color ratio, and LIDAR ratio without any assumptions by using two wavelength rotational Raman LIDAR signals. These parameters are good indicators for the aerosol size. And we can find ${\AA}$ngstr$\ddot{o}$m exponent, color ratio, and LIDAR ratio under various weather conditions. Finally, it can be seen that the ${\AA}$ngstr$\ddot{o}$m exponent has an inverse relationship to the particle size of the aerosol and the color ratio is linearly dependent on the aerosol size. An ${\AA}$ngstr$\ddot{o}$m exponent from 1.2 to 3.1, a color ratio from 0.28 to 1.04, and a LIDAR ratio 66.9 sr at 355 nm and 32.6 sr at 532 nm near the cloud were obtained.
Keywords
LIDAR; Rotational Raman; Backscattering; Extinction; Color ratio;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 1  (Related Records In Web of Science)
Times Cited By SCOPUS : 2
연도 인용수 순위
1 D. Kim and H. Cha, “Suggestion for qualitative LIDAR identification of different types of aerosol using the two wavelength rotational Raman and elastic LIDAR,” Opt. Lett. 31, 2915-2917 (2006).   DOI   ScienceOn
2 H. Blasius, “Das Aehnlichkeitsgesetz bei Reibungsvorganegen,” Z. Ver. Dtsch. Ing. 16, 639-643 (1912).
3 Y. M. Noh, Y. J. Kim, B. C. Choi, and T. Murayama, “Aerosol LIDAR ratio characteristics measured by a multi-wavelength Raman LIDAR system at Anmyeon Island, Korea,” Atmos. Res. 86, 76-87 (2007).   DOI   ScienceOn
4 A. H. Omar and T. Babakaeva, “Aerosol optical properties derived from LIDAR observations using cluster analysis,” IEEE Intern. Geo. Rem. Sens. 3, 2212-2215 (2004).   DOI
5 L. Prandlt, “Uber Flussigkeitsbewegung bei sehr Kleiner Reibung,” Verh. III. Intern. Math. Kongr. Heidelberg, 484-491 (1904).
6 A. Ansmann and D. Muller, “LIDAR and atmosphere aerosol particles,” Springer 102, 112-117 (2005).
7 P. B. Russell, R. W. Bergstrom, Y. Shinoznka, A. D. Clarke, P. F. Decarlo, J. L. Jimenez, J. M. Livingston, J. Redemann, B. Holben, O. Dubovic, and A. Strawa, “Absorption Ǻngström exponent in AERONET and related data as an indicator of aerosol composition,” Atmos. Chem. Phys. Discuss. 9, 21785-21817 (2009).   DOI
8 C. Y. She, R. J. Alvarez II, L. M. Caldwell, and D. A. Krueger, “High-spectral-resolution Rayleigh-Mie LIDAR measurement of aerosol in atmospheric profiles,” Opt. Lett. 17, 541-543 (1992).   DOI
9 V. Rizi, M. Larlori, G. Rocci, and G. Visconti, “Raman LIDAR observations of cloud liquid water,” Appl. Opt. 43, 6440-6453 (2004).   DOI
10 A. Ansmann, U. Wandinger, M. Riebesell, C. Weitkamp, and W. Michaelis, “Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter LIDAR,” Appl. Opt. 31, 7113-7131 (1992).   DOI
11 A. Angstrom, "On the atmospheric transmission of sun radiation and on dust in the atmosphere," Geogr. Ann. 11, 156-166 (1929).   DOI   ScienceOn
12 D. G. Kaskaoutis and H. D. Kambezidis, “Comparison of the Angstrom parameters retrieval in different spectral ranges with the use of different techniques,” Meteorol. Atmos. Phys. 99, 233-246 (2008).   DOI
13 D. Kim, S. Park, H. Cha, J. Zhou, and W. Zhang, “New multi-quantum number rotational Raman LIDAR for obtaining temperature and aerosol extinction and backscattering scattering coefficients,” Appl. Phys. B 82, 1-4 (2006).   DOI
14 D. Kim and H. Cha, “Rotational Raman LIDAR for obtaining aerosol scattering coefficients,” Opt. Lett. 30, 1728-1730 (2005).   DOI   ScienceOn
15 W. N. Chen, S. Y. Chang, C. C. K. Chou, and T. K. Chen, “Total scatter-to-backscatter ratio of aerosol derived from aerosol size distribution measurement,” Int. J. Environment and Pollution 37, 45-54 (2009).   DOI   ScienceOn
16 D. Kim and H. Cha, “Rotational Raman LIDAR: design and performance test of meteorological parameters(Aerosol backscattering coefficients and temperature),” J. Korean Phys. Soc. 51, 352-357 (2007).   DOI   ScienceOn
17 K. H. Lee, J. E. Kim, Y. J. Kim, J. Kim, and W. Hoyningen-Huene, “Impact of the smoke aerosol from Russian forest fires on the atmospheric environment over Korea during May 2003,” Atmos. Environ. 39, 85-99 (2005).   DOI   ScienceOn