• Title/Summary/Keyword: rotational anisotropy

Search Result 46, Processing Time 0.019 seconds

Precision Determination of Anisotropy Constant $K_1$from Magnetization Curve of Partially Aligned Unaxial Anisotropy System

  • Kim, Yoon-Bae;Kim, Hyoung-Tae
    • Journal of Magnetics
    • /
    • v.6 no.4
    • /
    • pp.142-144
    • /
    • 2001
  • A method to deduce the rotational magnetization curve from experimental magnetization of partially aligned uniaxial anisotropy system has been investigated. The curve obtained by this process has been evaluated quire close to the theoretical magnetization curve compared to that obtained by linear extrapolation from high field data. This new approach offers better accuracy for the determination of magnetic anisotropy by fitting a calculated magnetization curve to the obversed one.

  • PDF

Effect of Annealing on the Magnetic Anisotropy of Amorphous $Co_{89}Nb{8.5}Zr{2.5}$Thin Films ($Co_{89}Nb{8.5}Zr{2.5}$ 비정질 박막의 이방성에 미치는 열처리 효과)

  • 김현식;민복기;송재성;오영우
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.6
    • /
    • pp.486-492
    • /
    • 1998
  • The amorphous Co-based magnetic films have a large saturation flux density, a low coercive force, and a zero magnetostriction constant. Therefore, they have been studied for application to magnetic recoding heads and micro magnetic devices. However, it was found that the magnetic anisotropy was changed for each film fabrication processes. In this study, we investigated how to control the anisotropy of sputtered amorphous $Co_{89}Nb{8.5}Zr{2.5}$ films. After deposition, the rotational field annealing ant the uniaxial field annealing were performed under the magnetic field of 1.5 kOe. the annealing was done at the temperature range from 400 to $600^{\circ}C$ for one hour. As-deposited amorphous $Co_{89}Nb{8.5}Zr{2.5}$ thin film had saturation magnetization ($4\piM_5$) of 0.8 T, coercive force($_IH_C$) of 1.5 Oe, and anisotropy field($H_k$) of 11 Oe. The amorphous $Co_{89}Nb{8.5}Zr{2.5}$ thin films annealed by rotational field annealing at $500^{\circ}C$ for one hour was found to be isotropy, and $4\piM_5$ of 0.9 T was obtained from these films, Also, the magnetic anisotropy of as-deposited films could be controlled by uniaxial field annealing at $400^{\circ}C$ for one hour. Anisotropy field($H_k$) of 17 Oe and $4\piM_5$ of 1.0 T were obtained by this method.

  • PDF

Dynamics of RNA Bacteriophage MS2 Observed with a Long-Lifetime Metal-Ligand Complex

  • Kang, Jung Sook;Yoon, Ji Hye
    • Journal of Photoscience
    • /
    • v.11 no.1
    • /
    • pp.35-40
    • /
    • 2004
  • [Ru(2,2'-bipyridine)$_2$(4,4'-dicarboxy-2,2'-bipyridine)]$^{2+}$(RuBDc) is a very photostable probe that possesses favorable photophysical properties including long lifetime, high quantum yield, large Stokes' shift, and highly polarized emission. To evaluate the usefulness of this luminophore (RuBDc) for studying macromolecular dynamics, its intensity and anisotropy decays when conjugated to RNA bacteriophage MS2 were examined using frequency-domain fluorometry with a high-intensity, blue light-emitting diode (LED) as the modulated light source. The intensity decays were best fit by a sum of two exponentials, and the mean intensity decay time was 442.2 ns. The anisotropy decay data showed a single rotational correlation time (2334.9 ns), which is typical for a spherical molecule. The use of RuBDc enabled us to measure the rotational correlation time up to several microseconds. These results indicate that RuBDc can be useful for studying rotational diffusion of biological macromolecules.s.

  • PDF

DYNAMICS OF $tRNA*{val}$ MEASURED WITH A LONG-LIFETIME METAL-LIGAND COMPLEX

  • Kang, Jung-Sook
    • Journal of Photoscience
    • /
    • v.7 no.4
    • /
    • pp.155-159
    • /
    • 2000
  • [Ru(bpy)$_2$(dppz)]$^2$$^{+}$ (bpy = 2,2'-bipyridine, dppz = dipyrido[3,2-a:2',3'-c]phenazine)(RuBD), a long-lifetime metal-ligand complex displays photophysical properties including long lifetime, polarized emission, and very little background fluorescence. To further show the usefulness of this luminophore(RuBD) for probing nucleic acid dynamics, its intensity and anisotropy decays when bound to tRN $A^{val}$ were examined using frequency-domain fluorometry with a blue light-emitting diode(LED)as the modulated light source. Unexpectedly much longer mean lifetime was obtained at 4$^{\circ}C$(<$\tau$>=178.3 ns) as compared to at $25^{\circ}C$(<$\tau$>=117.0 ns), suggesting more favorable conformation of tRN $A^{val}$ for RuBD when intercalated at 4$^{\circ}C$. The anisotropy decay data showed longer rotational correlation times at 4$^{\circ}C$(52.7 and 13.0 ns) than at $25^{\circ}C$ (32.9 and 10.3 ns). The presence of two rotational correlation times suggests that RuBD reveals both local and overall rotational motion of tRN $A^{val}$. Due to long lifetime of RuBD and small size of tRN $A^{val}$, very low steady-state anisotropy values were observed, 0.048 and 0.036 at 4 and $25^{\circ}C$, respectively. However, a clear difference in the modulated anisotropy values was seen between 4 and $25^{\circ}C$. These results indicate that RuBD can be useful for studying hydrodynamics of small nucleic acids such as tRN $A^{val}$.^{val}$.>.$.>.

  • PDF

Transbilayer Effects of Chlorpromazine.HCl on Rotational Mobility of Synaptosomal Plasma Membrane Vesicles Isolated from Bovine Brain

  • Ahn, Ki-Weon;Choi, Chang-Hwa;Kim, Inn-Se;Chung, In-Kyo;Cho, Goon-Jae;Jang, Hye-Ock;Yun, Il
    • BMB Reports
    • /
    • v.33 no.6
    • /
    • pp.541-547
    • /
    • 2000
  • Fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene (DPH) was used to evaluate the effects of chlorpromazine HCl on the range of the rotational mobility of bulk bilayer structure of the synaptosomal plasma membrane vesicles (SPMV) isolated from a bovine brain. In a dose-dependent manner, chlorpromazine HCl increased the anisotropy (r), limiting anisotropy ($r_{\infty}$) and order parameter (S) of DPH in the membranes. Cationic 1-[4-(trimethylammonio)-phenyl]-6-phenylhexa-1,3,5-hexatriene (TMA-DPH) and anionic 3-[p-(6-phenyl)-1,3,5-hexatrienyl]-phenylpropionic acid (PRO-DPH) were utilized to examine the range of transbilayer asymmetric rotational mobility of the neuronal membranes. The anisotropy (r) of TMA-DPH in the inner monolayer was 0.034 greater than the value of PRO-DPH in the outer monolayer of the membranes. Both cationic TMA-DPH and anionic PRO-DPH were also used to examine the transbilayer asymmetric effects of chlorpromazine HCl on the range of rotational mobility of the membranes. Chlorpromazine HCl have a decreasing effects on the rotational mobility of the bulk bilayer structures and have a greater decreasing effect on the mobility of the inner monolayer as compared to the outer monolayer of the membranes. It has been proven that chlorpromazine HCl exhibit a selective rather than nonselective fluidizing effect within the transbilayer domains of the SPMV.

  • PDF

Effects of Local Anesthetics on the Rate of Rotational Mobility of Phospholipid Liposomes

  • Chung, In-Kyo;Kim, Dae-Gyeong;Chung, Yong-Za;Kim, Bong-Sun;Choi, Chang-Hwa;Cho, Goon-Jae;Jang, Hye-Ock;Yun, Il
    • BMB Reports
    • /
    • v.33 no.3
    • /
    • pp.279-284
    • /
    • 2000
  • Using fluorescence probes, 2-(9-anthroyloxy) stearic acid (2- AS) and 12-(9-anthroyloxy) stearic acid (12-AS), we determined the differential effects of local anesthetics (tetracaine-HCI, bupivacaine-HCI, lidocaine-HCI, prilocaine-HCI and procaine-HCI) on the differential rotational rate between the surface (in carbon number 2 and its surroundings including the head group) and the hydrocarbon interior (in carbon number 12 and its surroundings) of the outer monolayer of the total phospholipid fraction liposome that is extracted from synaptosomal plasma membrane vesicles. The anisotropy (r) values for the hydrocarbon interior and the surface region of the liposome outer monolayer were$0.051{\pm}0.001$ and $0.096{\pm}0.001,$ respectively. This means that the rate of rotational mobility in the hydrocarbon interior is faster than that of the surface region. Local anesthetics in a dosedependent manner decreased the anisotropy of 12-AS in the hydrocarbon interior of the liposome outer monolayer, but increased the anisotropy of 2-AS in the surface region of the monolayer. These results indicate that local anesthetics have significant disordering effects on the hydrocarbon interior, but have significant ordering effects on the surface region of the liposome outer monolayer.

  • PDF

Differential Effects of Local Anesthetics on Rate of Rotational Mobility between Hydrocarbon Interior and Surface Region of Model Membrane Outer Monolayer

  • Chung, In-Kyo;Cha, Seong-Kweon;Chung, Yong-Za;Kim, Bong-Sun;Choi, Chang-Hwa;Cho, Goon-Jae;Jang, Hye-Ock;Yun, Il
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.4 no.1
    • /
    • pp.41-46
    • /
    • 2000
  • Using fluorescence polarization of 12-(9-anthroyloxy)stearic acid (12-AS) and 2-(9-anthroyloxy)stearic acid (2-AS), we evaluated the differential effects of local anesthetics on differential rotational rate between the surface (in carbon number 2 and its surroundings including the head group) and the hydrocarbon interior (in carbon number 12 and its surroundings) of the outer monolayer of the total lipid fraction liposome extracted from synaptosomal plasma membrane vesicles. The anisotropy (r) values for the hydrocarbon interior and the surface region of the liposome outer monolayer were $0.078{\pm}0.001$ and $0.114{\pm}0.001,$ respectively. This means that the rate of rotational mobility in the hydrocarbon interior is faster than that of the surface region. In a dose-dependent manner, the local anesthetics decreased the anisotropy of 12-AS in the hydrocarbon interior of the liposome outer monolayer but increased the anisotropy of 2-AS in the surface region of the monolayer. These results indicate that local anesthetics have significant disordering effects on the hydrocarbon interior but have significant ordering effects on the surface region of the liposome outer monolayer.

  • PDF

Annealing Effect of Local Anisotropy Field in Amorphous Co66Fe4Ni1B14Si15 Ribbon

  • Kim, C.G.;Jeong, M.H.;Jeong, M.H.;Yoon, S.S.;Yu, S.C.
    • Journal of Magnetics
    • /
    • v.3 no.4
    • /
    • pp.123-126
    • /
    • 1998
  • The magneto-impedance (MI) has been measured in the annealed Co66Fe4Ni1B14Si15 amorphous ribbon for the evaluation of anisotropy field. MI at the frequency of 10 MHz is related to the transverse permeability from rotational magnetization depending on the local anisotropy field. MI varies sensitively with the annealing temperature, reflecting the change of anisotropy field distribution. The local anisotropy fields evaluated from MI Profiles are discussed in terms of the magnetic softness and microstructural change by the annealing.

  • PDF

Spin-Rotational Relaxation of a Nuclear Spin on an Internal Rotor

  • Jo-Woong Lee
    • Bulletin of the Korean Chemical Society
    • /
    • v.4 no.1
    • /
    • pp.48-54
    • /
    • 1983
  • A magnetic nucleus located on an internal rotor can interact with magnetic fields arising from end-over-end molecular rotation as well as internal rotation. In this paper the expressions for spin-rotational relaxation times, $T_{1.SR}\;and\;T_{2.SR}$, are derived for such nucleus with the anisotropy of molecular rotation explicitly taken into consideration. The derived expressions are shown to be composed of two parts, the contribution from spin-overall-rotation coupling and that from spin-internal-rotation coupling. Some remarks on the use of derived expressions are also provided.

MnIr Thickness Dependence of Torque Signals in CoFe/MnIr Thin Films (CoFe/MnIr 박막 재료에서 MnIr의 두께에 따른 토오크 신호 분석)

  • Kim, Dong Young;Yoon, Seok Soo
    • Journal of the Korean Magnetics Society
    • /
    • v.24 no.5
    • /
    • pp.140-145
    • /
    • 2014
  • We analyzed the MnIr thickness dependence of torque signals measured in exchange coupled CoFe/MnIr ($t_{AF}$) bilayers. The measured torque signals were compared with calculated ones by Stoner-Wohlfarth model. The exchange coupling anisotropy $J_c$ was considered for the model calculation between ferromagnetic (F) and antiferromagnetic (AF) layers with uniaxial anisotropy constant of $K_F$ and $K_{AF}$, respectively. The rotational losses were appeared in the range of $0.5t_c$ < $t_{AF}$ < $t_c$ ($=J_c/K_{AF}$) by the unpinned AF layer. While, the unidirectional anisotropy ($J_k$) was caused by the pinned AF layer at $t_{AF}$ > $t_c$. The critical thickness of MnIr layer was $t_c$ = 3.4 nm in CoFe/MnIr bilayers. The rotational losses behavior as shown in $t_{AF}$ = 3 nm sample were explained by the random orientation of the easy axis of AF grains. The unidirectional anisotropy obtained from torque signal of $t_{AF}$ = 10 nm sample was $J_k=0.63J_c$. Thus, the unidirectional anisotropy can be enhanced up to $J_k=J_c$ by aligning the AF easy axis.