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A magnetic nucleus located on an internal rotor can interact with magnetic fields arising from end-~over-end molecular 
rotation as well as internal rotation. In this paper the expressions for spin-rotational relaxation times, Ti,Sr and T2.sr, are 
derived for such nucleus with the anisotropy of molecular rotation explicitly taken into consideration. The derived expressio­
ns are shown to be composed of two parts, the contribution from spin-overall-rotation coupling and that from spin-internal- 
rotation coupling. Some remarks on the use of derived expressions are also provided.

Introduction
It has previously been shown112 that a magnetic nucleus 

located on an internal rotor can interact with magnetic fields 

arising from rotation of internal rotor itself with respect to 

the molecule-fixed frames as well as end-over-end rotation of 

the entire molecule and the corresponding spin-rotation cou­

pling Hamiltonian may be written in the form

geSR=-i c j-i d j (i)

where I is the nuclear spin angular momentum operator, J 

and J are the total and internal rotational angular momentum, 

respectively, and C and D are the corresponding coupling 

tensors for the nuclear spin under consideration. The first 

term of the righthand side of Eq.(l) will be named as the 

spin-overall-rotation coupling while the second term may be 

referred to as the spin-internal-rotation coupling.

Easier, Dubin and Chan1 have derived an expression for 

the spin-rotational relaxation time, TliSR, fora nucleus on an 

internal rotor assuming the interaction of nucleus with mag­

netic field arising from rotation of the intern지 rotor is the 

dominant relaxation mechanism. Their expression, however, 

has not found much application to actual interpretation of 

the spin-rotational relaxation data for a nucleus on an internal 

rotor because of inherent difficulty in understanding the phy­

sical meaning of the correlation time involved in their deriva­

tion. Later, Burke and Chan3 have proposed another expres­

sion for TltSR assuming that the magnetic field arising from 

internal rotation fluctuates independently of that from overall 

rotation of the entire molecule, and this expression has use­

fully been exploited by Jonas and his collaborators4 5 and 

Suchanski and Canepa,6 not to mention Chan and his co­

workers.3 7

Unfortunately, Burke and Chan have treated the problem 

under the assumption that overall rotation of the entire mo­

lecule is isotropic and that the results obtained by Hubbard8 

can be applied to this case. Such formulation ca아s some dou­

bts on the applicability of the derived expression to a large 

number of molecules. In particular, when the effect of aniso­

tropy in rotational motions is emphasized, it cannot provide 

a proper basis for discussion. Thus a more general expression 

seems to be required.

In this paper we will derive an explicit expression for rltSR 

and T2(Sr on the basis of Hubbard's theory of relaxation9 

with the anisotropy of overall rotational motion fully taken 

into consideration from the outset and some discussion on the 

application of the derived expression will be presented.

Density Operator Theory of Spin Relaxation

Since the pioneering work of Bloembergen, Purcell, and 

Pound several classic papers on the microdynamical theory of 

nuclear spin relaxation have appeared and they are well 

summarized in the books by Abragam10 and Slichter.11 In 

particular Hubbard9 has shown that both quantum rpechani- 

cal and semiclassical forms of density operator relaxation 

theory can be derived from a common formulation. Before 

delving into actual treatment of spin-rotational relaxation 

in the presence of intem지 rotation we will briefly review 

and recapitulate the Hubbard's treatment of spin relaxation.

Suppose we have a spin system which can interact with its 

surroundings and let the Hamiltonian for this spin system and 

its molecular surroundings (called the "bath해) be written as

及=执£($) +F(q) +G(q, s)] (2)

where hE (s') is the part of the Hamiltonian that depends 

only on the spin variables s, hF(q) is the Hamiltonian for the 

bath whose variable is denoted symbolically by q, and G(q,s) 

represents the interaction between the spin system and the 

bath.

All the interactions of interest can be written in the form

G(0,$) =爭决(g)卩K) ⑶

where Uk(q) and Vk(s) operate, respectively, on variables of 

the bath and the spin system. We have to note that G(qfs) 

must be Hermitian even though Uk(s) and Vk (s) need not 

be so. This can be accomplished by defining Uk and Vk such 

that

U이 =(U")L 卩아 =(V")* (4)

Let us define the time-dependent Heisenberg operators Uk(t) 

and Vk(t) as follows:

[八(£)=即 Uke~iFt (5)

and
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卩vke~iEt (6)

Vk(t) is usually expandable into 나此 following form of series:

= S V/exp (7)

The density operator for the entire system (spin system 

H- bath), p(t), evolves according to the equation

dpfdt- —£[E+F+G, p] (8)

Since 나le heat capacity of bath is usually much larger than 

that of^he spin system, to a good approximation the bath can 

be considered to be at thermal equilibrium at all times. Thus 

one may write

P(q,E=a(s,t)pT(q) (9)

where oT{q) is the boltzmann equilibrium density operator 

for 나}e bath; 사tat is,

PTCq) =：e~hF/kTl Trq{e~hF/kT) (10)

with k and T denoting the Boltzmann constant and absolute 

temperature of the bath, respectively.

After somewhat lengthy discussion Hubbard has shown 

that at high temperature (hE « kT) and in the presence of 

strong magnetic field the density operator for the spin system 

alone should satisfy the following equation:

。一(7，) (11)

where R(a—(jT) is the so-called relaxation superoperator 

given by

/) = &R(a璀[口孕, 门, I개] (12)

with aT being the equilibrium density operator for spin 

system defined by

ar= e~hE/kTl 7‘厂 (e 애 E"T) (13)

and the spectral density is defined as

Jik 9) = _8 (r) + K原(一 t) ] e 如 dz (14)

with Km(t) being given by

&(r) = 7為/ #(£)]

三 IW+沅®) (15)

It is obvious from Eq. (14) that J/*(—<w) . Eq. (11)

will be the starting point for our derivation of spin-rotational 

relaxation time expressions.

Spin-Rotational Relaxation of a Nuclear on an Internal 
Rotor

In deriving the expressions for 7\,sr and T2t SR for a nucle­

ar spin on an internal rotor we shall restrict our attention to 

the case where the nucleus under consideration is located on 

the axis of internal rotation which coincides with the mole­

cular symmetry axis. Such limitation has been brought forth 

not only for mathematical convenience but also for our inter­

est in studying the relaxation of 13C spin on methyl and 

trisubstituted methyl erouDs in oreanic molecules such as 
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toluene, nitromethane, benzotrifluoride, etc. We will denote 

three principal axes of molecular inertia tensor by at bt and ct 

one of which, say the c-axis, is assumed to coincide with the 

axis of internal rotation as well as with that of molecular 

symmetry. Also, three principal moments of inertia of the 

entire molecule are, respectively, denoted by &心队 and 

and the moment of inertia of internal rotor about its axis of 

rotation by 3a.

It can be shown from the previous res나ts* that for a 

nuclear spin on the axis of internal rotation which coincides 

with the molecular symmetry axis the spin-rotation coupling 

Hamiltonian given by Eq. (1) can further be simplified to

^sr— ~ S Cgg Ig Jg—Da Icj (16)

because for such nucleus the coupling tensors C and D be­

come diagonal in the coordinates system (a,b, c). In Eq. (16) 

Ig and Jg are, respectively, the components of the nuclear 

spin vector I and the rotational angular momentum J along 

theg-th principal axis, Cgg is the principal value of the tensor 

C along the g-axis, j is the component of internal rotational 

angular momentum j along the axis of internal rotation, and 

Da is the principal value of D along the axis of internal rota­

tion.

In order to facilitate the adaptation of Hubbard's theory 

to our case we now introduce the following components of 

first rank spherical tensor of spin operator:

/<> = Ic, /±1= +~^(.Ia±i (17)

v 2

In terms of such components of spherical tensor the interac­

tion G(q, s) may now be expressed as

= ，Csr=£ Akh (18)
k

where

厶+1=—(Caa Ja — i Cbh 人)/方，

A>— 一 (Ccc /方，

A_l= — —+ £ 6扁人)/力 (19)

In Eqs. (16), (18) and (19) the nuclear spin vector and the 

rotational angular momentum have both been expressed in 

terms of their components in the molecule-fixed coordinates 

in which C and D are diagonal. However, the magnetic re­

sonance experiments are performed in the space-fixed coordi­

nates system (x, y. z) that is determined by the direction of 

externally applied magnetic field. The two coordinates systems 

are related to each other by a rotation which can be defined 

by a set of Eulerian angles Q(仇如 ©). It is necessary, 

therefore, to relate the Hamiltonian to the space-fixed coordi­

nates system at least inasmuch as the components of spin 

vector are concerned. Such transformation may be effected 

if the Wigner rotation matrix of first-order, 0⑴(Q), is 

employed as follows:12

U L 0⑴(Q)*时 (20)
q」• 1

where 7a's are the comnonents oF mherical tensor define서 
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by Eq. (17) in the molecule-fixed coordinates (a, b, c) and 

TgS denote the similarly defined components in the space- 

fixed coordinates (x, yt z).

Application of the transformation defined by Eq. (20) to 

Eq. (18) will lead to the expression

t q

=£U丄 (21)

where

(22)

In order to derive the expressions for relaxation times we 

now return to Eq. (11). Comparing Eq. (21) with Eq. (3), 

Vk(s) is identified with Tr Multiplying Eq. (11) by Tq and 

taking the trace, one obtains

号-</〉= -i Tr(EE,刃爲)+

(23)

where <7,> means Tr(a Ig)

Since E=—a)o7o» where(dq is the Larmor frequency of 

the nuclear spin of interest, and

꼬尸([E0 L)= 아)TrSE,%])

Eq. (23) may be rewritten as

-第Y£>= -i 欢 TrM,切)+ Tr{R{o-aT')爲}

Noting 사le commutation rule [Zb 切 = —(一DM 爲, we 

have

糸<L〉=认一邛欢q〈L〉+ Tr[R(。—户)功

(24)

The last term on 나此 righthand side of Eq.(24) may now be 

calculated as follows. Since 厂讪丄住，"如」“=厂询邮we 

have

Tr{R(ff-ffT)新

=S S J"(T伽)匕卩} 
i=~i

= "神儿(T例) 昼0—“저)[田,(25)

Recalling the commutation relation 口，匕]=8(& ^)匕坷 

where £(0, g)=g and S(士Lg) = [(l干g)(2土g)]"% we 

can obtain from Eq. (25)

Tr{」R(W2 끄) 新

=(—如。)W, q)SQ+g, Z)

X — <Z+g+L>T) (26)

where v〔Q〉t means Tr{aTQ).

Substitution of Eq. (26) into Eq. (24) yields

으YL>=f(-功 q 例 <7?>

+ £ £ (一<如)£(& q) Z)
k I

x (〈主+时【〉一VZ+gH〉丁) . (27)
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-务(一아)) + 丄1"((。())] 

X«7o>-</o>t). (28)

Also, by setting q=±l and k-il—Q we have

-[Jo,o(O) — 土1〉(29)

where use has been made of the fact that <7±1〉丁=0.

Thus, from Eqs. (28) and (29) we obtain the following 

formal expressions for Tr and T2'

-*-= - ”)o) + —2J-i,

(30)

and

=J0i0(0) — two) (31)

I 2

We now have to evaluate 丿以时's from Eqs. (14), (15), 

and (21). When we try to evaluate U시)U*), the 

correlation functions involving both the rotational angular 

momentum and the molecular orientation, such as shown 

below, will appear.

/ 加(Q)侦]島L/尹⑴(Q)、讥 G2)

Evaluation of such correlation functions requires ^at we 

have to know the probability that the molecule will take the 

angular momentum J(?+r) and orientation Q(t+&) 거t a 

later time t+r when it was known to have the angular 

momentum J(z) and orientation Q(t) at time t Unfortuna­

tely, such a knowledge is unavailable as yet. If, however, the 

correlation time for fluctuation of the rotational angular 

momentum,勺，is very much different from that for the 

change of orientation, tq, we may assume '

0⑴(Q)七日宀 卩」0⑴(Q)

n兀(서十) Jg，Q)x[0⑴(Q)M"[0⑴(Q)%A

(33)

Such a separability approximation has also been adopted by 

Hubbard8 and Atkins.13 Of course, the validity of Eq. (33) 

will depend on the detailed nature of molecular rotation in 

fluid phase which is not very well known up to the present 

time. In 사le rotational diffusion limit where tj<t0 such 

validity is well guaranteed; on the other hand, for small and 

nonpolar molecules, especially at high temperature, the in­

ertial effect plays an important role in which case 勺 is com­

parable to tq in magnitude.14 Thus in the inertial limit the 

evaluation of correlation functions given by Eq (32) wo미d 

be difficult.15 Therefore we will restrict our attention to the 

case where end-over-end molecular rotation can be described 

by the rotational diffusion model.

The orientational correl흐tion functions of the type

[0 W (Q) %」사r (Q) 七*1 (34)

may be calculated on the basis of Perrin-Favro rotation이 

diffusion equation16-17 for anisotropic motions if molecular

• . __■ _____ ____  ____ __ _ — — 
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and the results have been tabulated up to r=3 by Lee.18 

In particular when 口=1, we have

[刎 (Q) 야*丄+，[奶> (壹M，

= *-(-""%，(r)

(小'，a,g'=0, 士 1) (35)

where

/徂(£)=/当.〜1($) = *@一시”(厂4山1+厂』시이),

华 ”) =/으M)=梟-이이 (次“ 一厂奶)

厶

/伝⑵=瑁将)=八以値)=7湼山)=0,

"治)=厂伝너~如心 (36)

In Eq. (36) Aai 厶加 and Jc represent three principal values 

of the rotational diffusion tensor J. Note that 1^(t) *s are 

even functions of time t.

Substitution of Eq. (2) into Eq. (15) and use of the resets 

obtained in the above discussion will lead us to 나此 following 

expression:

Kg (r) = I7q(t+T)Uq> (f)

= 巧丄(t) {Caa2 Ja(t + T)Ja(t)

+cw2 +c„2 9c(t+r)h(t)} /方2.

(37)

In the above expression R has been defined by the relation

9尸儿+ (DJOj (38)

Eq. (37) can be expressed in an alternative form if we intro­

duce a new coupling constant Ca which has been named as the 

spin-intemal-rotation coupling constant by Dubin and Chan.1 

From the properties of spin-rotation coupling tensor one 

can show that1,2

ca= (、이跆 Ccc= ~eg-Da. (39)

Thus we can rewrite Eq. (38) as

队=(、이乳溢=丄十¥& 3 (40)

서a

where ja is the total rotational angular momentum of the 

internal rotor; that is,19

論=(이"一이鉗j (41)

Substitution of Eq. (40) into Eq. (37) and use of Eq. (39) 

will enable us to rewrite K”，(r) as

Kg，(T)=事(一 1)'巧丄(T) {G/ XW)W 

+Cb?瓦奸 T)J2) + C/膈+枫($)}

(42)

In view of Eqs. (36) and (37) it is now obvious that

Kqq心)= K*r) (q, q'=。, 士 1)

Therefore, the spectral density Jqq> (<u) can now be rewritten 

as
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Jqq' (<0)= J。K“，(T)COS (DT dt, (43)

Assuming the angular momentum correlation functions 

decay exponentially, we can obtain from Eqs. (30), (31), 

(42) and (43) the following expressions for T1(SR and T2,sr 

in the extreme narrowing limit:

一1_ — 一1一 \c 2 '戸 I ―气扁 ^bc \

5피潔目*汨

VF (登"卷汩}

(44) 

and

__1—=_丄一 [c 2 7~2 (_2“ 3 + 玲 +二드쓰*호_\ 
Ta 6袍2 I aa a \ Tja-\-Tab 4。+% 자c )

+ C曲2 T2 (-E戶—+ 一¥흐 J- 勺七咨 )

+ C 히 旨'项 ( 2。口 + 弓危 I： +

"J(t「出+ 5 臥+乌「"况功

(45)

In these expressions Tja, rJb, and are the characteristic 

correlation times for fluctuation of Ja. Jb, and ja, respectively, 

and raj, etc. arc defined by the relations

Tab-(九+瓦)f 服=皿+ 4尸， (

하冷= (瓦+4)T (46)

Since in the rotational diffusion limit it can usually be 

assumed that 55,臥《弓击,眼,腿，Eqs. (44) and (45) 

are further simplified to

丄〜丄 
可 TT

으? (Cfla2 Ja2 匚/4 + C必 Jft2 Tjb + Cf^ Tja)

(47)

For a sm기 1, symmetric internal rotor Tjn will probably 

be longer than both Tja and TJh. Moreover, since 乩,肉〉乩 

Ca2 元2 will be larger than Cafl2 and C^2 邛.Thus the third 

term in Eq. (47) will be larger 나12m the other two terms. If we 

assume that this third term dominates the other two terms, 

we may write

(号由产糸(48)

The expression given by Eq. (48) is exactly what Dubin and 

Chan1 have suggested and it can approximately describe the 

spin-rotational relaxation for a nuclear spin on an internal 

rotor in a large molecule. This expression, however, has not 

been used very often in the actual interpretation of spin-ro­

tational relaxation data because of difficulties in understand­

ing the physical meaning of correlation time Tja. Since jtt 

is the total rotational angular momentum of the internal 

rotor o끼y [see Eq. (41)], its fluctuation will be strongly affect­

ed by the fluctuation of Jc through coupling of the former to 

the latter. Therefore, the correlation time will depend
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not only on the motion of the internal rotor but also on the 

overall rotation of the entire molecule and its temperature 

dependence will be complicated. Moreover, we have also to 

note that it is relative motions of internal rotor with respect 

to the other part of molecule, not the overall motion of the 

former, that is important in studying the effect of barrier 

to internal rotation. Hence it will be more convenient if the 

conflation function of ja is reexpressed in terms of Jc and 

j. To do so we return to the calculation of the correlation 

function (t). It can easily be seen from Eq. (41)

that

ja« + s)j'a(£)= S/«c)2 丄(£ + #)儿0 

Hi-，/"帀可而

+ ("4) (1 -乩/乱){丄(*)汩)+ ；(Z + r)Jfa)}

(49)

Burke and Chan3 have discussed about two possible limits 

in which Jc and j are "strongly" correlated or completely un­

correlated. However, we contend here that it is very likely 

that Jc and j are completely uncorrelated for the following 

reason. A glance at the rotational Hamiltonian written in 

terms of 丿舄 Jc, and /20 will tell us that j is not coupled to 

Jc at all. Thus Jc(t) j (t)—Q at any time t. Furthermore, 

after a Ion흠 time r j(t) will also vanish. Hence, if

Jc(£+如)j(£) is nonvanishing at any arbitrary time it will 

mean that a certain correlation between Jc and j, which has 

originally not existed, is created by external fluctuating forces. 

Such a situation is very unlikely in view of randomness of 

intermolecular collisions in fluid phases. In other words one 

may say that Jc and j fluctuate independently of each other. 

Therefore, we obtain from Eq. (49)

Ja(+)財)=+

+ (50)

From Eqs. (47) and (50) we now obtain the following ex­

pressions for and T2,sr-

(1」T[)sr=(기 TQsr
备(C"2 j2 Tja+C^j^tJb+CJ

+ 壽 C/(l一乩"4)2^勺 (51)

where tJc and 勺 are the correlation times characteristic 

of fluctuation of Jc and 7, respectively. Since j flutuates in­

dependently of Ja, and Jc, Tj is not influenced by overall 

rotation of the entire molecule, hence characteristic of internal 

rotation. The first term on the righthand side of Eq. (51) 

represents the contribution to Tt sr from the spin-overall- 

rotation coupling while the second term is due to the spin­

internal-rotation coupling.

In case the height of barrier to internal rotation is zero, 

we have classically

了 (52)

Also, regardless of the presence of barrier, one may write in 

classical sense

me j/t们"

and

丄2=4講7

Thus, in case of the zero barrier we may write

J^jsR 이'' "J 必 C强2 Tj,,

+ &&2"+(l-兀码)兀C*』(53)

We have derived Eq. (53) under the assumption that the 

coupling tensors C and D are diagonal in the principal axis 

system of molecular inertia tensor, (a, b, c). If the axis of 

internal rotation coincides with one of three principal axes 

of molecular inertia tensor, say the c 一 axis, but the coupling 

tensors are not diagonal in this axes system, more elaborate 

calculations will lead to the following expression:

牛)SR = ■备

+ (S综2)修丄+ (q眼)/寸(54)

where and Dpq are the “-element of tensors C and D 

in the inertial axes system. In deriving Eq. (54) we have assu­

med that different components of rotational angular moment­

um are not correlated to one another. In case where the nucle­

ar spin of interest is not located on the axis of internal rotation 

as for in methyl 흥roup and 19F in -CF3 group* Eq. (54) 

must be used in아ead of Eq. (51).

If the anisotropic nature of rotational m애ions may be 

ignored, we can replace rJa, 5, and tJc by a single 

correlation time Tj and 此，&： by the average moment 

of inertia 9=*(&+乩+&), thus producing

(-号=1^# {3 M C2 4+ (1-乩"4) & G? Tj], 

(55)

where

己2=是為2杠“2) 

*5

Eq. (55) has previously been derived by Burke and Chan3 

by modifying the Hubbard's derivation for spherical top 

molecules without internal 1•아ational degree of freedom,8 

and has been used by Schmidt and Chan,7 Jonas and his co­

workers4' 5 and Suchanski and Canepa.6 Unfortunat이y, 

however, to our present knowledge not too m죠ny investi흠a- 

tors seem to try to exploit the usefulness of this equation.

Discussion
In order to extract the informations about m이ecular mot­

ions from NMR relaxation data one usually measures the 

temperature dependence of Tj for nuclear spins of interest. 

Thus one may expect that the measurement of temperature de­

pendence of TliSRfor a nuclear spin on an internal rotor can 

provide the informations regarding rotation of the internal 

rotor. In our case, however, the temperature dependence of 

sr for the nuclear spin on the intern이 rotor alone may 
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not suffice to provide such informations because there are 

four diflererent rotational angular correlation times, 

TJb, and 勺.To obtain the complete informations of 

these correlation times one also has to measure the tempera­

ture dependence of Tier's for the nuclear spins not located 

on the internal rotor and in this case the components of spin­

rotation coupling tensors for all the spins involved must also 

be known. Unfortunately, however, it is common that not all 

these data are available. Unless these data are precisely kno­

wn, one cannot make full use of Eq. (53) and, instead, has to 

resort to a more approximate formula such as Eq. (55).

Nuclear dipolar and quadrupolar relaxation measurements 

usually provide the informations about the orientational cor­

relation time, "⑵, which is the c아elation time for the 

second order spherical harmonics or components of the se­

cond order Wigner rotation matrix. Measurements of this 

correlation time and theoretical interpretations based on an 

appropriate model usually yield the informations about the 

orientational changes associated with molecular rotations in 

liquid phase.

A common method of estimating the magnitude of r0<2) is 

based on the Stokes-Debye relation21

끄 (56)

where a is the molecular hydrodynamic radius and 7] the 

viscosity of medium. As is well known, Eq. (56) is based on 

the isotropic rotational diffusion model where it is assumed 

that the rotational angular momentum correlation time tj 
is much shorter than “⑵.Such an assumption has been sho­

wn to be well valid for highly viscous and polar liquids. For 

nonpolar molecules, especially when they are small in size, 

however, it has often been reported that estimated values 

from Eq. (56) are much longer than those obtained from the 

dipolar and quadrupolar relaxation measurements. To correct 

for this the NMR spectroscopists usually employ either the 

microviscosity model proposed by Gierer and Wirtz22 or the 

slip-stick model proposed by Hu and Zwan가g/3 Both theories 

give formally the same fourmula for "⑵；that is,

T。⑵ =1疇끄 (OW) (57)

1

where x may be considered as an adj니stable parameter which 

gives the best agreement with experimental data.

In contrast to this there seems to be no known method of 

directly estimating tj. Only indirect methods are known in 

which tq(2} is first estimated and then, using the relation 

between “⑵ and tj, the latter is evaluated. Recently 

much progress has been achieved to find the relation between 

these two correlation times,24~26 but many experimentalists 

still prefer to estimate tj using the simpler relation pro­

posed by Hubbard효 which is valid in the rotational diffusion 

limit.

招吳=或广 (58)

Using the method described above, we can gain some insight
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intQ the nature of m이ec니ar rotation in liquid phase. For cx- 

ample let ns consider 나le toluene molecule in pure liquid sta- 

tc. Fury and Jonas27 have shown that reasonable value of k 
for toluene is 0.11. Using this value of k and other relevant 

data for toluene, we can obtain form Eq. (57) “⑵= 1.45X 

lb* sec at 38° C. Substitution of this value into the Hub- 

bard relation gives us tj=8.57x 10-H sec, which mauis 

that 하)e contribution from the spin-ovcrall-rotation coupling 

to the total spin-rotation이 relaxation rate for 13C spin on 

methyl group in toluene would approxirhately be 0.0018 sec-1 

if we use Eq. (55). However, the measurement carried out in 

our laboratory28 indicates that the relaxation rate due to the 

spin-overall-rotation coupling is approximately 0.021 sec-1 

at 38° C, which corresponds to r7=5.74x IO-13 sec. Thus 

the observed value for tj is larger 사】an the e아imated one 

almost by one order in magnitude. This difference can be 

understood on the basis of Eq (53), rather 나lan Eq. (55), if 

if we assume that one of 나iree rotational angular momentum 

conflation times, and 勺,，is much longer than

the other two. This in t니rn indicates that rotational motions 

of toluene molecule in liquid phase are very anisotropic and 

such a view is consistent with the results obtained by Pecora et 

冰.29

Unlike the case of overall rotation시 motion, however, 

internal rotation of methyl or tris너bstituted methyl group 

about its symmetry axis may be treated as being almost of in­

ertial character. Thus Burke and Chan3 have proposed that 

_i
Tj is proportional to (^a/kT)2; that is,

勺=勺(乩/馈井 (59)

where 勺 is an empirical constant obtained by fitting to the 

experimental data. Burke and Chan,3 Jonas et n/.1,5, and 

Suchanski and Canepas have all found that 勺mL5 is the 

most suitable value for describing the internal rotation of 

-CH3 and -CF3 group in organic molecules. Our measure­

ment for methyl group in toluene28 also confirms this result,
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