• Title/Summary/Keyword: rotational

Search Result 3,863, Processing Time 0.034 seconds

The Complete Analysis of Rotational Dynamics of Paramagnetic Contrast Agents

  • 황문정;장용민;강덕식
    • Proceedings of the KSMRM Conference
    • /
    • 2001.11a
    • /
    • pp.117-117
    • /
    • 2001
  • 목적: 상자성 자기공명 조영제의 효율을 결정하는 중요 인자중의 하나인 조영제의 rotational correlation time ($\tau$R)을 전자상자성공명 data를 측정하고 이를 정량적으로 분석하여 결정하였다. 대상 및 방법: rotational dynamics가 주로 분자의 크기 및 모양에 의해 결정된다는 점을 이용하여 anisotropic한 (equation omitted) tensor를 가지는 VO$^{2+}$의 VO(DTPA)시료에 대해 다양한 온도에서 즉 다양한 rotational time에 대해 ESR spectrum을 측정하였다. 측정된 EPR data로부터 (equation omitted) 텐서 그리고 최종적으로 $\tau$R 을 SIMPOW와 EPRLF을 사용하여 계산하였다.

  • PDF

Automatic feature recognition for rotational parts (회전현상 부품에서의 가공현상 특징의 자동인식에 관한 연구)

  • 이경휘;정무영
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.896-900
    • /
    • 1992
  • This paper presents a comprehensive methodology of automatic feature recognition for rotational parts. The parts of interest are rotational without deviation. In stage one, IGES formatted daa of 2D engineering drawings are transformed into three independent graphs through upperhalf profile. In stage two, recursive evaluations are made to recognize features and relevant information is acquired. Finally,an example is evaluated to demonstrate the recognition power of the developed algorithm for rotational features.

  • PDF

Study for Woehler Fatigue Line of Steel Beam-to-Column Structure (강재 기둥-보 구조물의 피로곡선 연구)

  • Kong Byung-Seung
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.700-705
    • /
    • 2005
  • This study presents a fatigue line with a plastic rotational angle to a great extent of plastic strain of Low-Cycle-fatigue period, such as earthquake, etc. This fatigue line with a plastic rotational angle is measured and analysed more simply in practice rather than Woehler's fatigue line which is developed in stress variation of the structure. It shows that the slope of fatigue line with a plastic rotational angle is equal to that with plastic strain through the experiments by proving the correlation that the plastic strain ratio is directly proportional to the plastic rotational angle in plastic hinge.

  • PDF

Equivalent Nodal Forces of The Solid Element with Rotational Degrees of Freedom (회전자유도가 있는 입체요소의 등가절점하중)

  • 최창근;정근영
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1995.10a
    • /
    • pp.161-168
    • /
    • 1995
  • The variable-node solid element with rotational degrees of freedom has been developed far efficient connection of transition zones and far connection of different types of elements with rotational degrees of freedom. In applying this new element to engineering problems, it is necessary to fine the relations between tractions and equivalent nodal farces. In this case, the equivalent forces in solid element with rotational degrees of freedom and ratational forces are a bit different from that af conventional solid elements. Some typical examples are presented.

  • PDF

Rotational Image Retrieval algorithm based on Wavelet Transform (웨이브렛 변환을 이용한 회전된 영상 검색 알고리즘)

  • 황도연;박정호;박민식;곽훈성
    • Proceedings of the IEEK Conference
    • /
    • 2002.06d
    • /
    • pp.161-164
    • /
    • 2002
  • We propose a new method for rotational image retrieval that it is based on highly related property between a spatial image and wavelet transform. The characteristics have an important role in the design of our algorithm. Our proposed algorithm for rotational image retrieval is to obtain same image or rotated image. Because our algorithm used an rotational image retrieval.

  • PDF

The Structural Features and Rotational Barriers in Indenyl Allyl Metal Complexes

  • Sungkwon Kang
    • Bulletin of the Korean Chemical Society
    • /
    • v.10 no.6
    • /
    • pp.554-559
    • /
    • 1989
  • The electronic structure, conformational preferences, and rotational barriers have been studied for transition metal indenyl allyl complexes by means of extended Huckel calculations. After geometrical optimization the exo conformation of allyl moiety is favored over the endo. The rotational barrier of indenyl ring in (Indenyl)Mo(CO)_2(Allyl)$ is computed to be 3.8 kcal/mol. Population analysis is applied to account for the conformational preferences and rotational barriers. A series of substituted allyl complexes has been also optimized. It shows steric hindrance plays a crucial role in setting the allyl orientation.

BI-ROTATIONAL HYPERSURFACE SATISFYING ∆IIIx =𝒜x IN 4-SPACE

  • Guler, Erhan;Yayli, Yusuf;Hacisalihoglu, Hasan Hilmi
    • Honam Mathematical Journal
    • /
    • v.44 no.2
    • /
    • pp.219-230
    • /
    • 2022
  • We examine the bi-rotational hypersurface x = x(u, v, w) with the third Laplace-Beltrami operator in the four dimensional Euclidean space 𝔼4. Giving the i-th curvatures of the hypersurface x, we obtain the third Laplace-Beltrami operator of the bi-rotational hypersurface satisfying ∆IIIx =𝒜x for some 4 × 4 matrix 𝒜.

Counter-Rotating Type Pumping Unit (Impeller Speeds in Smart Control)

  • Kanemoto, Toshiaki;Komaki, Keiichi;Katayama, Masaaki;Fujimura, Makoto
    • International Journal of Fluid Machinery and Systems
    • /
    • v.4 no.3
    • /
    • pp.334-340
    • /
    • 2011
  • Turbo-pumps have weak points, such as the pumping operation is unstable on the positive slope of the head curve and/or the cavitation occurs at the low suction head. To improve simultaneously both weak points, the first author invented the unique pumping unit composed of the tandem impellers and the peculiar motor with the double rotational armatures. The front and the rear impellers are driven by the inner and the outer armatures of the motor, respectively. Both impeller speeds are automatically and smartly adjusted in response to the pumping discharge, while the rotational torques between both impellers/armatures are counter-balanced. Such speeds contribute to suppress successfully not only the unstable operation at the low discharge but also the cavitation at the high discharge, as verified with the axial flow type pumping unit in the previous paper. Continuously, this paper investigates experimentally the effects of the tandem impeller profiles on the pump performances and the rotational speeds against the discharge, using the impellers whose loads are low and/or high at the normal discharge. The worthy remarks are that (a) the unstable operation is suppressed as expected and the shut off power is scarcely large in the smart control, (b) the blade profile contributes to determine the discharge giving the maximum/minimum rotational speed where the reverse flow may incipiently appears at the front impeller inlet, (c) the tandem impeller profiles scarcely affect the rotational speeds, while the loads of the front and the rear impellers are same, but (d) the impeller with the low load must run faster and the impeller with the high load must run slower at the same discharge to take the same rotational torque, and (e) the reverse flow at the inlet and the swirling velocity component at the outlet of the front impeller with the high load require making the rotational speed of the rear impeller with low load fairly faster at the lower discharge.

Structural Behavior Analysis of System Supports according to Boundary Condition of Joints between Vertical and Horizontal Members (시스템 동바리의 수직재와 수평재 연결부 경계조건에 따른 거동 분석)

  • Kim, Gyeoung Yun;Won, Jeong-Hun;Kim, Sang-Hyo
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.3
    • /
    • pp.60-65
    • /
    • 2017
  • This study examined the effect of rotational stiffness of joints between vertical and horizontal members in system supports. In order to prevent repeated disasters of system supports, it is important to examine the accurate behavior of system supports. Among various factors affecting the complex behavior of system supports, this study focused on the stiffness of joints between vertical and horizontal members. The considered joint was modelled by a rotational spring, but the translational displacements were fixed. The stiffness of rotational spring was calculated by utilizing the usable experimental data. In addition, the hinge connection condition, which is generally considered in design and only restrict the translational displacements, was modelled to compare the results. The case with the rotational stiffness in joints showed 3.5 times buckling loads compared to the case without the rotational stiffness. Thus, the structural behavior of the vertical member in system supports was similar to the vertical member with the fixed condition. For the combined stresses of vertical members, the combined stress ratios were reduced 5~6% by considering the rotational stiffness of connecting parts. However, for the horizontal member where showed relatively small stress range, the stresses were increased 2.3~7.6 times by considering the rotational stiffness in connecting parts.

Ground-Based Rotational SAR System for Field-Experiments (지상 운용 회전형 SAR 시험용 시스템 연구)

  • Hwang, Ji-Hwan;Kwon, Soon-Gu;Shin, Jong-Chul;Oh, Yi-Sok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.11
    • /
    • pp.1092-1100
    • /
    • 2011
  • A C-band ground-based rotational SAR system is presented in this paper. The rotaional SAR system is a test-bed for future rotational SAR systems which can be deployed in space and on a tower. The test-bed system is designed for imaging the electromagnetic scattering from earth surfaces and buried targets. This paper also presents the examination results of the generated SAR images. This rotational SAR system is basically consisted of the network-analyzer based HPS(Hongik Polarimetric Scatterometer) and a horizontally rotating arm. Several SAR images were obtained using the rotational SAR system for various target areas. To verify this system, we simulated the SAR images for the rotational SAR using the FDTD algorithm and compared between the measured and simulated SAR images. The rotational SAR system is operated at the center frequency of 5 GHz and various frequency bandwidth within 0.5~2 GHz to change the resolution of SAR images.