• Title/Summary/Keyword: rotational

Search Result 3,863, Processing Time 0.031 seconds

A Study on the Sounds and Vibrations of the Temporomandibular Joint using Electrovibratography (전자 진동술을 이용한 악관절의 잡음과 진동에 관한 연구)

  • Seok-Man Kang;Kyung-Soo Han;Min Shin
    • Journal of Oral Medicine and Pain
    • /
    • v.20 no.1
    • /
    • pp.141-158
    • /
    • 1995
  • This study was performed to invetigate the relationship between clinical manifestations related to temporomandibular joint sounds and temporomandibular joint vibrations that occurred synchronously with sounds. There have been reported in many articles that joint sounds indicate internal joint pathology. Therefore, it is necessary to evaluate type and patterns of joint sounds, and radiographic changes of temporomandibular joint(TMJ) in order to diagnose and deal with the Temporomandibular Disorders(TMD). For this study 142 patients with TMDs were collected and they were examined by routine diagnostic procedure for TMDs. The author classified TMJ sounds clinically into 3 types : click, popping, and crepitus. Transcranial and panoramic radiographs were taken for observein bony changes of TMJ, and for observing vibrations of TMJ Sonopak of Biopak system was used. The obtained results were as follows : 1. Female subjects with crepitus were older than those with click or popping and their mean ages were about 45 years old. But in male subjects, there was no age difference. 2. For all subjects, mean value of maximal mouth opening were above 40mm, which are lower limit of normal vertical opening. But in subjects with L-type opening deviation, mouth opening capacity were about 36mm of range. 3. Symptom duration stated when patient presented first were slightly longer in subjects with crepitus but there were no statistical differences. And there were also no radiographic differences among 3 types of joint sounds in regard to symptom duration. 4. In subjects wih click, it might have been interpreted that 12% had closed lock, 12% had degenerative joint disease, and about 17% of he subjects had normal joints by Sonopak. 5. There were no significant relationships between subjective loudness of joint sounds and magnitude of joint vibrations. 6. The highest value of Integral and peak amplitude were observed in popping sounds and though it was not significant, value of peak frequency was highest in crepitus. 7. Amount of mandibular positional change were differed between click and crepitus on frontal plane, between click, crepitus and popping on horizontal plane in rotational movement, respectively. However, there no difference among them in translational movements.

  • PDF

Dispersion in the Unsteady Separated Flow Past Complex Geometries (복합지형상에서 비정상 박리흐름에 의한 확산)

  • Ryu, Chan-Su
    • Journal of the Korean earth science society
    • /
    • v.22 no.6
    • /
    • pp.512-527
    • /
    • 2001
  • Separated flows passed complex geometries are modeled by discrete vortex techniques. The flows are assumed to be rotational and inviscid, and a new techlnique is described to determine the stream functions for linear shear profiles. The geometries considered are the snow cornice and the backward-facing step, whose edges allow for the separation of the flow and reattachment downstream of the recirculation regions. A point vortex has been added to the flows in order to constrain the separation points to be located at the edges, while the conformal mappings have been modified in order to smooth the sharp edges and to let the separation points free to oscillate around the points of maximum curvature. Unsteadiness is imposed to the flow by perturbing the vortex location, either by displacing the vortex from the equilibrium, or by imposing a random perturbation with zero mean to the vortex in equilibrium. The trajectories of passive scalars continuously released upwind of the separation point and trapped by the recirculating bubble are numerically integrated, and concentration time series are calculated at fixed locations downwind of the reattachment points. This model proves to be capable of reproducing the trapping and intermittent release of scalars, in agreement with the simulation of the flow passed a snow cornice performed by a discrete multi-vortex model, as well as with direct numerical simulations of the flow passed a backward-facing step. The results of simulation indicate that for flows undergoing separation and reattachment the unsteadiness of the recirculating bubble is the main mechanism responsible for the intense large-scale concentration fluctuations downstream.

  • PDF

Facial Contour Extraction in Moving Pictures by using DCM mask and Initial Curve Interpolation of Snakes (DCM 마스크와 스네이크의 초기곡선 보간에 의한 동영상에서의 얼굴 윤곽선 추출)

  • Kim Young-Won;Jun Byung-Hwan
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.43 no.4 s.310
    • /
    • pp.58-66
    • /
    • 2006
  • In this paper, we apply DCM(Dilation of Color and Motion information) mask and Active Contour Models(Snakes) to extract facial outline in moving pictures with complex background. First, we propose DCM mask which is made by applying morphology dilation and AND operation to combine facial color and motion information, and use this mask to detect facial region without complex background and to remove noise in image energy. Also, initial curves are automatically set according to rotational degree estimated with geometric ratio of facial elements to overcome the demerit of Active Contour Models which is sensitive to initial curves. And edge intensity and brightness are both used as image energy of snakes to extract contour at parts with weak edges. For experiments, we acquired total 480 frames with various head-poses of sixteen persons with both eyes shown by taking pictures in inner space and also by capturing broadcasting images. As a result, it showed that more elaborate facial contour is extracted at average processing time of 0.28 seconds when using interpolated initial curves according to facial rotation degree and using combined image energy of edge intensity and brightness.

Effects of anaerobic sealing agents on preload maintenance of screw-retained implant prosthesis with surface of screws (임플란트 보철물 나사의 전하중 유지에 나사 표면에 따른 혐기성 나사 고정제의 효과)

  • Ryu, Seung-Beom;Heo, Seong-Joo;Koak, Jai-Young;Kim, Seong-Kyun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.58 no.2
    • /
    • pp.103-109
    • /
    • 2020
  • Purpose: The purpose of this study was to evaluate the preload maintenance of the retaining screw when using anaerobic sealing agents in implant fixture and abutment components. Specifically, the study examines the effects of anaerobic sealing agents on different types of screws. Materials and methods: External hexagon implants made of titanium and anti-rotational abutments were used. Titanium abutment screws and ebony abutment screws from the same manufacturer were used. The experiment was divided into four groups (n = 10 in each group). In the control group, no sealing agent was used at the implant fixture and abutment screw interface. All abutment screws were tightened according to the manufacturer's recommended torque (30 N.cm). After 24 hours, the removal torque (detorque) of each screw was measured using a digital torque gauge device. The data were analyzed by two-way ANOVA test according to normality distribution satisfaction. Results: Looking at the results for each group, titanium screws and no treatment showed detorque values of 20.3 ± 1.6 N.cm. titanium screws and applied anaerobic sealing agent showed detorque values of 32.4 ± 6.7 N.cm. Ebony screws and no treatment showed detorque values of 20.2 ± 1.5 N.cm. ebony screws and applied anaerobic sealing agent showed detorque values of 30.4 ± 4.5 N.cm. Conclusion: The detorque value was higher in the case of using anaerobic sealing agents in both the titanium screw and ebony screw groups. But there was no difference between the two screws.

Analysis of inner parts in the disc cutters applied to the field tests (현장적용 디스크커터의 내부부품 분석)

  • Bae, Gyu-Jin;Choi, Soon-Wook;Chang, Soo-Ho;Lee, Gyu-Phil;Song, Bong-Chan;Kim, Kab-Boo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.4
    • /
    • pp.473-485
    • /
    • 2015
  • The problems for non-rotating of a disc cutter proceed from the faults in inner parts of the disc cutter such as the leak of hydraulic fluid, the intrusion of tunnel mucks and water, overloading, overheating, poor assembly and substandard material. The rotating of a disc cutter is an indicator to show that the inner parts of disc cutter is operable, although the rotational torque depends on the extent of the damage. Therefore, the key in the problems for non-rotating of disc cutter is to maintain that the tapered roller bearings are working properly. This study aims to investigate the inner parts disassembled from disc cutters applied to the field tests in order to help decision for reuse of the disc cutters. As results, surface finishing to remove the scratch on the load zone of the hubs is needed, with the intent to reuse a hub. And the investigation of lapping surface by optical microscope of floating seals and the contamination test of oil need to be performed for reuse of a disc cutter. Especially, the analysis results show that the floating seals play a key role in the normal operation of bearings. There is nothing significant to report in the rest parts such as bearing, shaft, seal retainers.

Treatment of Tibial Fractures by Interlocking Intramedullary Nailing (Interlocking Intramedullary Nail을 이용한 경골 골절의 치료)

  • Jung, Kwang-Yeoung;Lee, Dong-Chul;Suh, Jae-Sung;Kim, Se-Dong
    • Journal of Yeungnam Medical Science
    • /
    • v.10 no.2
    • /
    • pp.388-399
    • /
    • 1993
  • The adequate treatment of tibia fracture is one of the most difficult due to severe commiuntion, open wound, delayed union, angulation deformity and infection. We treated 38 fractures of the tibia by Interlocking intramedullary nail from Feb. 1983 to Mar. 1993, 35 cases of the tibia fracture were fresh, 13 cases of fracture were open. The other 3 cases were delayed union and nonunion. The Mean follow-up was 14.0 months. The results were as followings. 1. Of the 38 fractures, 37 fractures united and the mean union time was 18.7 weeks. 2. Interlocking intramedullary nail could be used to the majority of fractures of the proximal & distal tibia shaft fractures. 3. The Interlocking nail had rigid rotational stability and was appropriate for the treatment in severe unstable fractures, commninution and open with bone loss. 4. Delayed union or nonunion was a good indication for intramedullary nailling. 5. The major complication were valgus deformity of 2 cases, varus deformity of 1 case, 1 case deep infection. 6. Interlocking intramedullary nailing provided rigid fixation of fracture and then made early joint motion exercise and ambulation.

  • PDF

In vivo 3-dimensional Kinematics of Cubitus Valgus after Non-united Lateral Humeral Condyle Fracture

  • Kim, Eugene;Park, Se-Jin;Lee, Ho-Seok;Park, Jai-Hyung;Park, Jong Kuen;Ha, Sang Hoon;Murase, Tsuyoshi;Sugamoto, Kazuomi
    • Clinics in Shoulder and Elbow
    • /
    • v.21 no.3
    • /
    • pp.151-157
    • /
    • 2018
  • Background: Nonunion of lateral humeral condyle fracture causes cubitus valgus deformity. Although corrective osteotomy or osteosynthesis can be considered, there are controversies regarding its treatment. To evaluate elbow joint biomechanics in non-united lateral humeral condyle fractures, we analyzed the motion of elbow joint and pseudo-joint via in vivo three-dimensional (3D) kinematics, using 3D images obtained by computed tomography (CT) scan. Methods: Eight non-united lateral humeral condyle fractures with cubitus valgus and 8 normal elbows were evaluated in this study. CT scan was performed at 3 different elbow positions (full flexion, $90^{\circ}$ flexion and full extension). With bone surface model, 3D elbow motion was reconstructed. We calculated the axis of rotation in both the normal and non-united joints, as well as the rotational movement of the ulno-humeral joint and pseudo-joint of non-united lateral condyle in 3D space from full extension to full flexion. Results: Ulno-humeral joint moved to the varus on the coronal plane during flexion, $25.45^{\circ}$ in the non-united cubitus valgus group and $-2.03^{\circ}$ in normal group, with statistically significant difference. Moreover, it moved to rotate externally on the axial plane $-26.75^{\circ}$ in the non-united cubitus valgus group and $-3.09^{\circ}$ in the normal group, with statistical significance. Movement of the pseudo-joint of fragment of lateral condyle showed irregular pattern. Conclusions: The non-united cubitus valgus group moved to the varus with external rotation during elbow flexion. The pseudo-joint showed a diverse and irregular motion. In vivo 3D motion analysis for the non-united cubitus valgus could be helpful to evaluate its kinematics.

Numerical Analysis of EPB TBM Driving using Coupled DEM-FDM Part II : Parametric Study (개별요소법과 유한차분법 연계 해석을 이용한 EPB TBM 굴진해석 Part II: 매개변수 해석)

  • Choi, Soon-wook;Lee, Hyobum;Choi, Hangseok;Chang, Soo-Ho;Kang, Tae-Ho;Lee, Chulho
    • Tunnel and Underground Space
    • /
    • v.30 no.5
    • /
    • pp.496-507
    • /
    • 2020
  • A prediction of the performance of EPB TBM is significant for improving the constructability of tunnels. Thus, various attempts to simulate TBM excavation by the numerical method have been made until these days. In this paper, to evaluate the performance of TBM with different operating conditions, a parametric study was carried out using coupled discrete element method (DEM) and finite difference method (FDM) EPB TBM driving model. The analysis was conducted by changing the penetration rate (0.5 and 1.0 mm/sec) and the rotational speed of screw conveyor (5, 15, and 25 rpm) while the rotation velocity of the cutter head kept constant at 2 rpm. The torque, thrust force, chamber pressure, and discharging with different TBM operating conditions were compared. The result of parametric study shows that the optimum driving condition can be determined by the coupled DEM-FDM numerical model.

Numerical Analysis of EPB TBM Driving using Coupled DEM-FDM Part I : Modeling (개별요소법과 유한차분법 연계 해석을 이용한 EPB TBM 굴진해석 Part I : 모델링)

  • Choi, Soon-wook;Lee, Hyobum;Choi, Hangseok;Chang, Soo-Ho;Kang, Tae-Ho;Lee, Chulho
    • Tunnel and Underground Space
    • /
    • v.30 no.5
    • /
    • pp.484-495
    • /
    • 2020
  • To numerically simulate the advance of EPB TBM, various type of numerical analysis methods have been adopted including discrete element method (DEM), finite element method (FEM), and finite difference method (FDM). In this paper, an EPB TBM driving model was proposed by using coupled DEM-FDM. In the numerical model, DEM was applied in the TBM excavation area, and contact properties of particles were calibrated by a series of triaxial tests. Since the ground around the excavation area was coupled with FDM, the horizontal stress considering the coefficient of earth pressure at rest could be applied. Also, the number of required particles was reduced and the efficiency of the analysis was increased. The proposed model can control the advance rate and rotational speed of the cutter head and screw conveyor, and derive the torque, thrust force, chamber pressure, and discharging during TBM tunnelling.

Analysis of the Flexural Vibrations for the Rotating Cantilevered Rectangular Plates (회전하는 외팔 사각판의 굽힘진동 해석)

  • 이종민;이영신
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1992.10a
    • /
    • pp.59-64
    • /
    • 1992
  • 터빈 블레이드와 같이 회전하는 구조물의 파단은 공진 근처에서 진동이 발 생할 때에 이에 기인하는 피로에 의하여 발생한다. 그러므로 이와 같은 파단 을 피하기 위해서는 설계 단계에서 이론적인 계산에 의하여 구조물의 고유 진동수를 결정하는 것이 상당히 중요하다. 판이 회전을 받게 되면 원심력에 의하여 판의 강성이 증가하므로 고유진동수가 회전하지 않는 판의 고유진동 수보다는 상당히 증가하게 된다. 이에 대한 연구가 국내외에서 상당수 행하 여졌지만, 연구의 대부분이 회전의 영향을 고려하지 않은 정지판(stationary plate)에 대한 것이며 뢰전을 고려한 연구는 극히 제한되어 있다. 또한 회전 의 영향을 고려한 연구의 대부분이 해석 대상을 보로서 단순화 시켰고 해법 으로는 유한요소법과 Ritz법 등을 사용하였다. 이는 블레이드가 지니고 있는 기하학적인 형상과 진동 특성이 해석적인 방법으로 해결하는 데에는 상당한 어려움이 있기 때문이다. 실제적으로는 터빈 블레이드와 같은 회전체의 진동 특성이 설치각이나 비틀림각, 판의 형상비, 회전속도 등의 변화에 의하여 영 향을 받기 때문에 보와 같은 진동 거동을 보이기보다는 판이나 셀과 같은 진동 거동을 보이므로 보다 정확한 해석을 수행하기 위해서는 해석 대상을 판이나 셀로서 취급하는 것이 타당하다. 따라서 본 연구에서는 위와 같은 이 유 때문에 해석 대상을 등방성 사각판과 직교이방성 복합재료 사각판으로 선택하였으며, 구조물의 고유진동수에 영향을 미치는 다음과 같은 인자들을 해석에 고려하였다. 1. 회전속도 (rotational speed) 2. 설치각 (setting angle) 3. 허브의 반경 (hub radius) 4. 판의 형상비 (aspect ratio) 5. 적층순서 (stacking sequence)구조물에 대한 동적실험(dynamic test)을 통하여 단기간에 동적특성을 결정하고 SDM(structure dynamic modification)이나 FRS(force response simulation)를 수행하여 임의의 좌표 공간에 대한 진동수준을 해석적으로 예측할 뿐만 아니라 구조물의 진동제어 를 위한 동적인자를 변경시킬 수 있는 정보를 제공하며 장비를 방진할 경우 신뢰성 있는 전달률을 결정할 수 있다. 실험적으로 철교, 교량이나 건물의 철골구조 및 2층 바닥 등 대,중형의 복잡한 구조물에 대항 동특성을 나타내 는 모빌리티를 결정할 경우 충격 가진 실험이 사용되는 실험장비 측면에서 나 실험을 수행하는 과정이 대체적으로 간편하다. 그러나 이 경우 대상 구조 물을 충분히 가진시킬수 있는 용량의 대형 충격기(large impact hammer)가 필요하게 된다. 이러한 동적실험은 약 길이 61m, 폭 16m의 4경간 교량에 대 하여 동적실험을 수행하여 가능성을 확인하였다. 여기서는 실험실 수준의 평 판모델을 제작하고 실제 현장에서 이루어질 수 있는 진동제어 구조물에 대 한 동적실험 및 FRS를 수행하는 과정과 동일하게 따름으로써 실제 발생할 수 있는 오차나 error를 실험실내의 차원에서 파악하여 진동원을 있는 구조 물에 대한 진동제어기술을 보유하고자 한다. 이용한 해마의 부피측정은 해마경화증 환자의 진단에 있어 육안적인 MR 진단이 어려운 제한된 경우에만 실제적 도움을 줄 수 있는 보조적인 방법으로 생각된다.ofile whereas relaxivity at high field is not affected by τS. On the other hand, the change in τV does not affect low field profile but stron

  • PDF