• Title/Summary/Keyword: rotational

Search Result 3,863, Processing Time 0.031 seconds

Development of a Controller for Variable-rate Application of Granular Fertilizer (입제 비료의 변량 살포를 위한 제어기 개발)

  • Yu J.H.;Kim Y.J.;Ryu K.H.
    • Journal of Biosystems Engineering
    • /
    • v.31 no.2 s.115
    • /
    • pp.108-114
    • /
    • 2006
  • This study was conducted to design and fabricate a controller for variable-rate application of granular fertilizer based on physical and chemical information, to analyze the performance of the controller and characteristics of a discharger. The result of the study are summarized as follows: 1. The charge ratios of discharger by accumulation heights of fertilizer in hopper were examined, and the variations in charge ratio were $72.58{\sim}93.33%$ and $63.14{\sim}94.42%$ for the fertilizers Super 21 and Sinsedae, respectively. The charge ratio also decreased as the rotational speed of discharger increased. 2. The coefficient of variation of discharge amount by rotational speed and discharge time of discharger were in the range of $2.94{\sim}11.23%$ and $2.82{\sim}10.80%$ for the fertilizer of Super 21 and Sinsedae. Except the rotational speed of 12 rpm, the coefficient of variation for discharge amount were relatively small with 4% more or less 3. In order to evaluate the rotational speed of discharger, the control signal in the range of $0{\sim}5V$ was subdivided into the 50 steps by 0.1V. The regression equation for the rotational speed of discharger was Y=55.984X-79.174(X: input voltage, V, Y: discharger speed, RPM) and the $R^2$ was 0.99. 4. In order to evaluate the performance of the controller for variable-rate application of granular fertilizer, settling time to unit step input was examined. The settling time varied from 0.8sec to 1.4 sec.

Effects of the Slopes of the Rotational Axis and Bearing Preloads on the Natural Frequencies and Onset Speed of the Instability of a Rotor Supported on Gas Foil Bearings (가스 포일 베어링으로 지지된 고속 회전체의 경사각과 베어링의 기계적 예압이 고유 진동수와 불안정성 발생 속도에 미치는 영향)

  • Park, Moon Sung;Lee, Jong Sung;Kim, Tae Ho
    • Tribology and Lubricants
    • /
    • v.30 no.3
    • /
    • pp.131-138
    • /
    • 2014
  • This study investigates the effects of the slopes of the rotational axis and bearing preloads on the natural frequencies and onset speeds of the instability of a rotor supported on gas foil bearings (GFBs). The predictive model for the rotating system consists of a rigid rotor supported on two gas foil journal bearings (GFJBs) and a pair of gas foil thrust bearings (GFTBs). Each GFJB supports approximately half the rotor weight. As the slope of the rotational axis increases from $0^{\circ}$(horizontal rotor operation) to $90^{\circ}$(vertical rotor operation), the applied load on the GFJB owing to the rotor weight decreases. The predictions show that the natural frequency and onset speed of instability decrease significantly with an increase in the slope of the rotational axis. In a parametric study, the nominal radial clearance and preload for the GFJB were changed. In general, a decrease in the nominal radial clearance lead to an increase in the natural frequency and onset speed of instability. For constant assembly clearance, the decrease in the preload changed the natural frequency and onset speed of instability with insignificant improvements in the rotordynamic stability. The present predictions can be used as design guidelines for GFBs for oil-free high-speed rotating machinery with improved rotordynamic performance.

Comparison of Source Apportionment of PM2.5 Using PMF2 and EPA PMF Version 2

  • Hwang, In-Jo;Hopke, Philip K.
    • Asian Journal of Atmospheric Environment
    • /
    • v.5 no.2
    • /
    • pp.86-96
    • /
    • 2011
  • The positive matrix factorization (PMF2) and multilinear engine (ME2) models have been shown to be powerful environmental analysis techniques and have been successfully applied to the assessment of ambient particulate matter (PM) source contributions. Because these models are difficult to apply practically, the US EPA developed a more user-friendly version of the PMF. The initial version of the EPA PMF model does not provide any rotational capabilities; for this reason, the model was upgraded to include rotational functions in the EPA PMF ver. 2.0. In this study, PMF and EPA PMF modeling identified ten particulate matter sources including secondary sulfate I, vehicle gasoline, secondary sulfate II, secondary nitrate, secondary sulfate III, incinerators, aged sea salt, airborne soil particles, oil combustion, and diesel emissions. All of the source profiles determined by the two models showed excellent agreement. The calculated average concentrations of $PM_{2.5}$ were consistent between the PMF2 and EPA PMF ($17.94{\pm}0.30{\mu}g/m^3$ and $17.94{\pm}0.30\;{\mu}g/m^3$, respectively). Also, each set of estimated source contributions of the PMF2 and EPA PMF showed good agreement. The results from the new EPA PMF version applying rotational functions were consistent with those of PMF2. Therefore, the updated version of EPA PMF with rotational capabilities will provide more reasonable solutions compared with those of PMF2 and can be more widely applied to air quality management.

Effect of Body Posture on the Rest Position and the Rotational Torque Movement of the Mandible (신체 자세의 변화가 하악의 안정위와 비틀림 회전운동에 미치는 영향)

  • Jung, Seung-Ah;Han, Kyung-Soo;Park, Mi-Sung;Yang, Keun-Young
    • Journal of Oral Medicine and Pain
    • /
    • v.25 no.4
    • /
    • pp.383-394
    • /
    • 2000
  • This study was performed to investigate the effect of change of body posture on the rest position and the rotational torque movement of the mandible. Thirty dental students without any signs and symptoms of temporomandibular disorders and with natural dentition were selected for this study. Cervical inclination and the amount of the mandibular movement on protrusion, on left and right excursion, and on tapping in three body postures such as sitting position, supine position without pillow, and supine position with pillow were measured by goniometer, Cervical-Range-of-$Motion^{(R)}$, and mandibular tracking device, $BioEGN^{(R)}$ with $Rotate!^{(R)}$ program. The data obtained were classified and processed according to body posture and type of lateral guidance with SPSS windows program and the results were as follows: 1. There was significant difference among the three cervical inclinations by body postures. 2. Comparison of mandibular rest positions among body postures showed significant difference only for lateral distance in frontal plane, but comparison between before and after swallowing showed significant difference except for the lateral distance, vice versa. 3. Distance and amount of the rotational torque movement on protrusion and/or lateral excursions didn't show any difference by body posture. But by both body posture and lateral guidance type, there were slightly significant difference for some items. 4. A significant difference was shown for the rotational torque movement in frontal plane on tapping by body postures, for the lateral distance in frontal plane on sitting position by lateral guidance type, and for the rotational torque movement in frontal plane by both body posture and lateral guidance type.

  • PDF

Comparison of Hip Rotation Range of Motion in Jiu-Jitsu Athletes With and Without Low Back Pain (주짓수 선수의 허리 통증 유무에 따른 엉덩관절 돌림 가동범위 비교)

  • Yang, Sung-jun;Park, Kyue-nam;Kyung, Moon-soo;Kim, Si-hyun
    • Physical Therapy Korea
    • /
    • v.25 no.1
    • /
    • pp.47-52
    • /
    • 2018
  • Background: A limited hip rotational range of motion (ROM) has been considered to be one of characteristics of low back pain (LBP) in athletes. Although LBP frequently occurs in jiu-jitsu athletes, no previous has compared hip rotational ROM between jiu-jitsu athletes with and without LBP. Objects: The aim of the study was to compare ROM for hip internal rotation (IR) and external rotation (ER), and total hip rotation between jiu-jitsu athletes with and without LBP. Methods: Jiu-jitsu athletes were recruited for the LBP group ($n_1=15$) and control group without LBP ($n_2=15$). IR, ER, and total rotational range of hip joint were measured using a goniometer. Analysis of variance was used to compare the ROM between groups and sides. Results: The LBP group showed a significantly lower range of passive hip IR, passive total rotation, active IR, active ER, and active total rotation than the control group (p<.05). Dominant side of passive hip IR and active IR had a significantly lower ROM than non-dominant side (p<.05). In passive ER ROM, non-dominant side was significantly greater than dominant side (p<.05). Conclusion: Compared to jiu-jitsu athletes without LBP, athletes with LBP exhibit a loss of hip rotational ROM. Based on these results, clinicians and athletic trainers should measure hip rotational ROM when designing the management plan for jiu-jitsu athletes with LBP.

Disease and insect damage, growth and yield of sorghum, foxtail millet between rotational upland and continuing upland field

  • Yu, Je Bin;Yoon, Seong Tak;Yang, jing;Han, Tae Kyu;Jeong, In Ho;Kim, Young-Jung;Ye, Min Hee;Lee, Gil Jun;Cho, Soo Been;Lee, Young Kyung
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.349-349
    • /
    • 2017
  • This study was performed in order to investigate disease, insect damage, growth and yield characteristics of green maize by organic paddy-upland rotation system. This experiment also was to select optimum variety for organic paddy-upland rotation cultivation. This experiment was conducted at Anseong-si Gyeonggi province of Korea in 2016. The varieties used in this study are green maize of total 8 varieties. Green maize was planted at rotational upland field and continuing upland field and tested for comparison. In case of average occurrence of 4 major diseases for green maize, rotational upland field was higher than that of continuing upland field. Heukjinjuchal and Daehakchal were the lowest occurrence by less than 2% among 8 varieties. Average damage of 8 varieties by Ostrinia furnacalis larva, which is the main pest in green maize was higher in rotational upland field than that of continuing upland field. Chalok 4 and Heugjeom 2 were judged to be resistant varieties to 4 major diseases among 8 varieties. The average yield of green maize per 10a in rotational upland field decreased to 85% level of continuing upland field and Chalok 4 showed the highest yield by 789.0 kg/10a among 8 varieties. The most suitable varieties in organic paddy-upland rotation system were judged to be Chalok 4, Heukjinjuchal and Heukjeom 2.

  • PDF

Comparison of fit accuracy and torque maintenance of zirconia and titanium abutments for internal tri-channel and external-hex implant connections

  • Siadat, Hakimeh;Beyabanaki, Elaheh;Mousavi, Niloufar;Alikhasi, Marzieh
    • The Journal of Advanced Prosthodontics
    • /
    • v.9 no.4
    • /
    • pp.271-277
    • /
    • 2017
  • PURPOSE. This in vitro study aimed to evaluate the effect of implant connection design (external vs. internal) on the fit discrepancy and torque loss of zirconia and titanium abutments. MATERIALS AND METHODS. Two regular platform dental implants, one with external connection ($Br{\aa}nemark$, Nobel Biocare AB) and the other with internal connection (Noble Replace, Nobel Biocare AB), were selected. Seven titanium and seven customized zirconia abutments were used for each connection design. Measurements of geometry, marginal discrepancy, and rotational freedom were done using video measuring machine. To measure the torque loss, each abutment was torqued to 35 Ncm and then opened by means of a digital torque wrench. Data were analyzed with two-way ANOVA and t-test at ${\alpha}=0.05$ of significance. RESULTS. There were significant differences in the geometrical measurements and rotational freedom between abutments of two connection groups (P<.001). Also, the results showed significant differences between titanium abutments of internal and external connection implants in terms of rotational freedom (P<.001). Not only customized internal abutments but also customized external abutments did not have the exact geometry of prefabricated abutments (P<.001). However, neither connection type (P=.15) nor abutment material (P=.38) affected torque loss. CONCLUSION. Abutments with internal connection showed less rotational freedom. However, better marginal fit was observed in externally connected abutments. Also, customized abutments with either connection could not duplicate the exact geometry of their corresponding prefabricated abutment. However, neither abutment connection nor material affected torque loss values.

Development of rotational pulse-echo ultrasonic propagation imaging system capable of inspecting cylindrical specimens

  • Ahmed, Hasan;Lee, Young-Jun;Lee, Jung-Ryul
    • Smart Structures and Systems
    • /
    • v.26 no.5
    • /
    • pp.657-666
    • /
    • 2020
  • A rotational pulse-echo ultrasonic propagation imager that can inspect cylindrical specimens for material nondestructive evaluations is proposed herein. In this system, a laser-generated ultrasonic bulk wave is used for inspection, which enables a clear visualization of subsurface defects with a precise reproduction of the damage shape and size. The ultrasonic waves are generated by a Q-switched laser that impinges on the outer surface of the specimen walls. The generated waves travel through the walls and their echo is detected by a Laser Doppler Vibrometer (LDV) at the same point. To obtain the optimal Signal-to-Noise Ratio (SNR) of the measured signal, the LDV requires the sensed surface to be at a right angle to the laser beam and at a predefined constant standoff distance from the laser head. For flat specimens, these constraints can be easily satisfied by performing a raster scan using a dual-axis linear stage. However, this arrangement cannot be used for cylindrical specimens owing to their curved nature. To inspect the cylindrical specimens, a circular scan technology is newly proposed for pulse-echo laser ultrasound. A rotational stage is coupled with a single-axis linear stage to inspect the desired area of the specimen. This system arrangement ensures that the standoff distance and beam incidence angle are maintained while the cylindrical specimen is being inspected. This enables the inspection of a curved specimen while maintaining the optimal SNR. The measurement result is displayed in parallel with the on-going inspection. The inspection data used in scanning are mapped from rotational coordinates to linear coordinates for visualization and post-processing of results. A graphical user interface software is implemented in C++ using a QT framework and controls all the individual blocks of the system and implements the necessary image processing, scan calculations, data acquisition, signal processing and result visualization.

Heterosis Effects of Body Weight and Jumping Height in Rotational Crossing of Two-Subspecies of Mice

  • Kurnianto, E.;Shinjo, A.;Suga, D.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.7
    • /
    • pp.888-893
    • /
    • 2000
  • The present study was conducted to evaluate heterosis effects of body weight and jumping height for successive generations of rotational crossing using two subspecies of mice which are very different in body weight and in genetic relationship from each other. Domesticated laboratory mouse $CF_{{\sharp}1}$ (C) and Yonakuni wild mouse (Y) were used as materials. Two groups of rotational crossing was made according to the parent used at the beginning of crosses, C male$\times$Y female and Y male$\times$C female. These crosses were done to produce the first ($G_1$ and $G_1{^{\prime}}$), second ($G_2$ and $G_2{^{\prime}}$) and third generations ($G_3$ and $G_3{^{\prime}}$) with sire used was alternated. Individual body weights were weighed at 1 (wk1), 3 (wk3), 6 (wk6) and 10 weeks of age (wk10) and jumping heights were measured at six weeks of age (wk6). Only the first litter used. For body weight, results of this study showed that genetic group effects were significant (p<0.01) source of variation at all ages studied. Sex effects were significant (p<0.01) at wk3, wk6 and wk10, but not at wk1. Significant interaction effects (p<0.01) between genetic group and sex were found at wk6 and wk10. The C mice with large maternal effects produced heavier offspring body weight and crosses using sire of this subspecies maintained heavy weight compared to wild Y mouse sire that has small body size. Heterosis tended to exist at the rotational crossing started from Y male C female. For jumping height, effects of genetic group and sex were significant, sire and dam effects (heterosis) exhibited from the first to third generations, and no maternal effects were observed.

A Study on the Amount of Mandibular Rotation and Pattern of Condylar Path (하악운동 회전량과 과로의 형태에 관한 연구)

  • Kyung-Soo Han;You-Me Lee
    • Journal of Oral Medicine and Pain
    • /
    • v.21 no.2
    • /
    • pp.369-382
    • /
    • 1996
  • The author performed this study to investige the relationship between condylar movements recorded with Pantronicⓡ and mandibular rotational torque movements with BioEGNⓡ. For this study 56 patients with Temporomandibular disorders(TMD) and 30 dental students without any masticatory signs and symptoms were selected as patients group and control group, respectively. The items recorded with Pantronicⓡ(Denar Corp., USA) were immediate side-shift, progressive side-shift, angle of orbiting path, protrusive path and PRI. BioEGNⓡ(Bioelectric gnathography, Bioresearch Inc., USA) were used to measure the amounts of mandibular rotational torque movements in frontal and horizontal plane, and the distance of mandibular translation at incisal area. Amount of mandibular rotational torque movement depicted between the condyles was automatically analysed by angle and difference in frontal and horizontal plane. The obtained data were processed with SAS program and the conclusion of this study were as follows : 1. Mean values of items between patients group and control group in Pantronic measurements were not significantly different except in left protrusive path and in Pantronic Reproducibility Index(PRI). There were no significant difference of condylar paths by preferred chewing side and affected side between the two groups. 2. The amount of mandibular rotational torque movements were differed in frontal angle and difference on protrusion, and in frontal and in horizontal difference on left excursion between the two groups. But the amounts of translatory movements were actually same on all eccentric movements. 3. The amount of mandibular rotational torque movements with splint mere almost not changed from those without splint, with the exception of in horizontal measurements on protrusion. 4. The correlations of items between in Pantronic measurements and in BioEGN measurements wert not consistently, significant, however, generally the ISS related significantly with horizontal torque movement positively, and with frontal torque movement negatively on the contrary, the PSS showed positive correlation with frontal torque movement, and negative correlation with horizontal torque movement.

  • PDF