• Title/Summary/Keyword: rotation-based transformation

Search Result 85, Processing Time 0.022 seconds

Development of Fixture for Reducing Errors in Registration of 3D Laser Measuring System (Registration 오차감소를 위한 3차원 비접촉식 측정용 Fixture 개발)

  • Kim Yeun Sul;Jin Young Ju;Lee Hi Koan;Yang Gyun Eui
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.10 s.175
    • /
    • pp.107-113
    • /
    • 2005
  • This paper presents a method to reduce errors in registration, which is used in transformation coordinate system of the multiple measuring data. In general, the ICP algorithms and feature-based approaches are used for registration. In order to measure wrap-around object, it is necessary to change the scanning direction or set-up of the object. A fixture is made to reduce registration errors caused by inaccurate center point of tooling balls, providing the more accurate registration method. And, the motorized fixture controls rotation and tilting to get precise the measuring data and registration. The proposed motorized fixture and registration method have advantages in accurate registration and precise measurement, compared with the conventional methods.

Size dependent torsional vibration of a rotationally restrained circular FG nanorod via strain gradient nonlocal elasticity

  • Busra Uzun;Omer Civalek;M. Ozgur Yayli
    • Advances in nano research
    • /
    • v.16 no.2
    • /
    • pp.175-186
    • /
    • 2024
  • Dynamical behaviors of one-dimensional (1D) nano-sized structures are of great importance in nanotechnology applications. Therefore, the torsional dynamic response of functionally graded nanorods which could be used to model the nano electromechanical systems or micro electromechanical systems with torsional motion about the center of twist is examined based on the theory of strain gradient nonlocal elasticity in this work. The mathematical background is constructed based on both strain gradient theory and Eringen's nonlocal elasticity theory. The equation of motions and boundary conditions of radially functionally graded nanorods are derived using Hamilton's principle and then transformed into the eigenvalue analysis by using Fourier sine series. A general coefficient matrix is obtained to assemble the Stokes' transformation. The case of a restrained functionally graded nanorod embedded in two elastic springs against torsional rotation is then deeply investigated. The effect of changing the functionally graded index, the stiffness of elastic boundary conditions, the length scale parameter and nonlocal parameter are investigated in detail.

Region-Based 3D Image Registration Technique for TKR (전슬관절치환술을 위한 3차원 영역기반 영상정합 기술)

  • Key, J.H.;Seo, D.C.;Park, H.S.;Youn, I.C.;Lee, M.K.;Yoo, S.K.;Choi, K.W.
    • Journal of Biomedical Engineering Research
    • /
    • v.27 no.6
    • /
    • pp.392-401
    • /
    • 2006
  • Image Guided Surgery (IGS) system which has variously tried in medical engineering fields is able to give a surgeon objective information of operation process like decision making and surgical planning. This information is displayed through 3D images which are acquired from image modalities like CT and MRI for pre-operation. The technique of image registration is necessary to construct IGS system. Image registration means that 3D model and the object operated by a surgeon are matched on the common frame. Major techniques of registration in IGS system have been used by recognizing fiducial markers placed on the object. However, this method has been criticized due to additional trauma, its invasive protocol inserting fiducial markers in patient's bone and generating noise data when 2D slice images are acquired by image modality because many markers are made of metal. Therefore, this paper developed shape-based registration technique to improve the limitation of fiducial marker based IGS system. Iterative Closest Points (ICP) algorithm was used to match corresponding points and quaternion based rotation and translation transformation using closed form solution applied to find the optimized cost function of transformation. we assumed that this algorithm were used in Total Knee replacement (TKR) operation. Accordingly, we have developed region-based 3D registration technique based on anatomical landmarks and this registration algorithm was evaluated in a femur model. It was found that region-based algorithm can improve the accuracy in 3D registration.

A Study on the Improvement of Torque Characteristics in PM Synchronous Motor (영구자석형 동기 전동기의 토크 특성 개선에 관한 연구)

  • 류시영;이두수
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.6 no.3
    • /
    • pp.231-242
    • /
    • 2001
  • In this paper, we present a method to improve the torque characteristic of PMSM(Permanent Magnet Synchronous Motor) and its hardware realization. It is based on the compensation of sinusoidal current delay caused by phase winding inductances. Since coordinate transformation is not used, simple hard-wired logic in the controller design is adopted and this scheme can eliminates the delay through the coordinate transformation. The delay components are varied according to rotation speeds, but this method can also make it possible to compensate those, dynamically. The control scheme has been verified by experiments on a 4-pole 3-phase PMSM, and the generated torques are increased at whole operation speed ranges.

  • PDF

System Development for Road Noise Prediction of Automobile Tire (자동차 타이어 도로소음 예측 시스템 개발)

  • 김병삼
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.2
    • /
    • pp.81-90
    • /
    • 1998
  • Noise produced by surface transportation vehicles affects our daily lives, penetrating wherver man lives or works. In this paper, a theoretical model has been studied to describe the sound radiation by the surface vibration of in-service tires and studied about an experiment on sound radiation characteristic due to tire vibration. When a tire is analyzed, it has been modeled as a curved beams with distributed sprongs and dash-pots which represent the radial, tangential stiffnes and damping of tire, respectively. The experimental investigation for the sound radiation of a radial tire has been made. Based on the sound intensity and STSF(Spatial Transformation of Sound Field) techniques. the sound pressure and the sound radiation are measured. The comparison of numerically analyzed results with experimental results was made seperately for the tire in rotation. As a result of this study, a program for the prediction of the tire vibration sound radiation was intended to by developed which enables a designer of a tire to foresee the influence of the various design factors on the tire vibration sound radiation.

  • PDF

Block Based Blind & Secure Gray Image Watermarking Technique Based on Discrete Wavelet Transform and Singular Value Decomposition

  • Imran, Muhammad;Harvey, Bruce A.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.2
    • /
    • pp.883-900
    • /
    • 2017
  • In this paper block based blind secure gray image watermarking scheme based on discrete wavelet transform and singular value decomposition is proposed. In devising the proposed scheme, security is given high importance along with other two requirements: robustness and imperceptibility. The use of discrete wavelet transform not only improves robustness but the selection of bands with high tolerance towards noise caused an improvement in terms of imperceptibility. The robustness further improved due to the involvement of singular vectors along with singular values in watermark embedding and extraction process. Finally, to achieve security, the selected DWT band is decomposed into smaller blocks and random blocks are chosen for modification. Furthermore, the elements of left and right singular vectors of selected blocks are chosen based on their dependence upon each other for watermark embedding. Various experiments using different images as host and watermark were conducted to examine and validate the proposed technique. Additionally, the proposed technique is tested against various attacks like compression, affine transformation, cropping, translation, X shearing, scaling, Y shearing, filtering, blurring, different kinds of noises, histogram equalization, rotation, etc. Lastly, the proposed technique is compared with state-of-the-art watermarking techniques and their comparison shows significant improvement of proposed scheme over existing techniques.

Stereo cameras calibration bases on Epipolar Rectification and its Application

  • Chaewieang, Pipat;Thepmanee, Teerawat;Kummool, Sart;Jaruvanawat, Anuchit;Sirisantisamrid, Kaset
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.246-249
    • /
    • 2003
  • The constraints necessary guarantee using the comparison of these extrinsic parameters, which each Rotation matrix and Translation Vector must be equal to the either, except the X-axis Translation Vector. Thus, we can not yet calculate the 3D-range measurement in the end of camera calibration. To minimize this disadvantage, the Epipolar Rectification has been proposed in the literature. This paper aims to present the development of Epipolar Rectification to calibrate Stereo cameras. The required computation of the transformation mapping between points in 3D-space is based on calculating the image point that appears on new image plane by using calibrated parameters. This computation is assumed from the rotating the old ones around their optical center until focal planes becomes coplanar, thereby containing the baseline, and the Z-axis of both camera coordinate to be parallel together. The optical center positions of the new extrinsic parameters are the same as the old camera, whereas the new orientation differs from the old ones by the suitable rotations. The intrinsic parameters are the same for both cameras. So that, after completed calibration process, immediately can calculate the 3D-range measurement. And the rectification determines a transformation of each image plane such that pairs of conjugate Epipolar lines become collinear and parallel to one of the image axis. From the experimental results verify the proposed technique are agreed with the expected specifications.

  • PDF

Registration between High-resolution Optical and SAR Images Using linear Features (선형정보를 이용한 고해상도 광학영상과 SAR 영상 간 기하보정)

  • Han, You-Kyung;Kim, Duk-Jin;Kim, Yong-Il
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.2
    • /
    • pp.141-150
    • /
    • 2011
  • Precise image-to-image registration is required to process multi-sensor data together. The purpose of this paper is to develop an algorithm that register between high-resolution optical and SAR images using linear features. As a pre-processing step, initial alignment was fulfilled using manually selected tie points to remove any dislocations caused by scale difference, rotation, and translation of images. Canny edge operator was applied to both images to extract linear features. These features were used to design a cost function that finds matching points based on their similarity. Outliers having larger geometric differences than general matching points were eliminated. The remaining points were used to construct a new transformation model, which was combined the piecewise linear function with the global affine transformation, and applied to increase the accuracy of geometric correction.

Color Image Enhancement Using Vector Rotation Based on Color Constancy (칼라 항상성에 기초한 벡터 회전을 이용한 칼라 영상 향상)

  • 김경만;이채수;박영식;하영호
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 1996.06a
    • /
    • pp.181-185
    • /
    • 1996
  • Color image is largely corrupted by various ambient illumination. However, human perceives always white color as white under any illumination because of a characteristic of human vision, called color constancy. In the conventional algorithm which applied the constancy effect, after the RGB color space is transformed to the IHS(Intensity, Hue, and Saturation) color space, then the hue is preserved and the intensity or the saturation is properly enhanced. Then the enhanced IHS color is reversely transformed to the RGB color space. In this process, the color distortion is included due to the color gamut error. But in the proposed algorithm, there is not transformation. In that, the RGB color is considered as 3 dimensional color vector and we assume that white color is the natural daylight. As the color vector of the illumination can be calculated as the average vector of R, G, and B image, we can achieve the constancy effect by simply rotating the illumination vector to the white color vector. The simulation results show the efficiency of the vector rotating process for color image enhancement.

  • PDF

Recognition and positioning of occuluded objects using polygon segments (다각형 세그먼트를 이용한 겹쳐진 물체의 인식 및 위치 추정)

  • 정종면;문영식
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.5
    • /
    • pp.73-82
    • /
    • 1996
  • In this paper, an efficient algorithm for recognizing and positioning occuluded objects in a two-dimensional plane is presented. Model objects and unknown input image are approximated by polygonal boundaries, which are compactly represented by shape functions of the polygons. The input image is partitioned into measningful segments whose end points are at the locations of possible occlusion - i.e. at concave vertices. Each segment is matched against known model objects by calculating a matching measure, which is defined as the minimum euclidean distance between the shape functions. An O(mm(n+m) algorithm for computing the measure is presentd, where n and m are the number of veritces for a model and an unknown object, respectively. Match results from aprtial segments are combined based on mutual compatibility, then are verified using distance transformation and translation vector to produce the final recognition. The proposed algorithm is invariant under translation and rotation of objects, which has been shown by experimental results.

  • PDF