• Title/Summary/Keyword: rotation vector

Search Result 247, Processing Time 0.027 seconds

Color Image Enhancement Using Vector Rotation Based on Color Constancy (칼라 항상성에 기초한 벡터 회전을 이용한 칼라 영상 향상)

  • 김경만;이채수;박영식;하영호
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 1996.06a
    • /
    • pp.181-185
    • /
    • 1996
  • Color image is largely corrupted by various ambient illumination. However, human perceives always white color as white under any illumination because of a characteristic of human vision, called color constancy. In the conventional algorithm which applied the constancy effect, after the RGB color space is transformed to the IHS(Intensity, Hue, and Saturation) color space, then the hue is preserved and the intensity or the saturation is properly enhanced. Then the enhanced IHS color is reversely transformed to the RGB color space. In this process, the color distortion is included due to the color gamut error. But in the proposed algorithm, there is not transformation. In that, the RGB color is considered as 3 dimensional color vector and we assume that white color is the natural daylight. As the color vector of the illumination can be calculated as the average vector of R, G, and B image, we can achieve the constancy effect by simply rotating the illumination vector to the white color vector. The simulation results show the efficiency of the vector rotating process for color image enhancement.

  • PDF

Gravity Removal and Vector Rotation Algorithm for Step counting using a 3-axis MEMS accelerometer (3축 MEMS 가속도 센서를 이용한 걸음 수 측정을 위한 중력 제거 및 백터 전환 알고리즘)

  • Kim, Seung-Young;Kwon, Gu-In
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.5
    • /
    • pp.43-52
    • /
    • 2014
  • In this paper, we propose Gravity Removal and Vector Rotation algorithm for counting steps of wearable device, and we evaluated the proposed GRVR algorithm with Micro-Electro-Mechanical (MEMS) 3-axis accelerometer equipped in low-power wearable device while the device is mounted on various positions of a walking or running person. By applying low-pass filter, the gravity elements are canceled from acceleration on each axis of yaw, pitch and roll. In addition to DC-bias removal and the low-pass filtering, the proposed GRVR calculates acceleration only on the yaw-axis while a person is walking or running thus we count the step even if the wearable device's axis are rotated during walking or running. The experimental result shows 99.4% accuracies for the cases where the wearable device is mounted in the middle and on the right of the belt, and 91.1% accuracy which is more accurate than 83% of commercial 3-axis pedometer when worn on wrist for the case of axis-rotation.

Research on the Basic Rodrigues Rotation in the Conversion of Point Clouds Coordinate System

  • Xu, Maolin;Wei, Jiaxing;Xiu, Hongling
    • Journal of Information Processing Systems
    • /
    • v.16 no.1
    • /
    • pp.120-131
    • /
    • 2020
  • In order to solve the problem of point clouds coordinate conversion of non-directional scanners, this paper proposes a basic Rodrigues rotation method. Specifically, we convert the 6 degree-of-freedom (6-DOF) rotation and translation matrix into the uniaxial rotation matrix, and establish the equation of objective vector conversion based on the basic Rodrigues rotation scheme. We demonstrate the applicability of the new method by using a bar-shaped emboss point clouds as experimental input, the three-axis error and three-term error as validate indicators. The results suggest that the new method does not need linearization and is suitable for optional rotation angle. Meanwhile, the new method achieves the seamless splicing of point clouds. Furthermore, the coordinate conversion scheme proposed in this paper performs superiority by comparing with the iterative closest point (ICP) conversion method. Therefore, the basic Rodrigues rotation method is not only regarded as a suitable tool to achieve the conversion of point clouds, but also provides certain reference and guidance for similar projects.

An Orthogonal Phase-Superimposed Peak-to-Average Power Ratio Reduction Technique

  • Han, Tae-Young;Kim, Nam;Choi, Jung-Hun;Lee, Jae-Hwan
    • Journal of electromagnetic engineering and science
    • /
    • v.7 no.4
    • /
    • pp.169-174
    • /
    • 2007
  • This paper presents a method of superimposing the rotation phases over the pilot and data symbols in order to reduce the peak-to-average power ratio(PAPR) in orthogonal frequency division multiplexing(OFDM). The phases of the rotation vector are added to those of the pilot symbols and those of the data symbols by interlaying them between any two pilot symbols. The receiver restores the data symbols by utilizing the channel estimation of the pilot symbols. Therefore, the bandwidth efficiency is improved by not using the subcarriers that are assigned for the reduction of the PAPR. Also, the enormous increase of the bit error rate which would be caused by incorrectly receiving the side information, i.e. the phases of the rotation vector, is prevented. The simulation results of the bit error rate performance for the BPSK are given using the COST-207 channel model.

Eye Detection in Facial Images Using Zernike Moments with SVM

  • Kim, Hyoung-Joon;Kim, Whoi-Yul
    • ETRI Journal
    • /
    • v.30 no.2
    • /
    • pp.335-337
    • /
    • 2008
  • An eye detection method for facial images using Zernike moments with a support vector machine (SVM) is proposed. Eye/non-eye patterns are represented in terms of the magnitude of Zernike moments and then classified by the SVM. Due to the rotation-invariant characteristics of the magnitude of Zernike moments, the method is robust against rotation, which is demonstrated using rotated images from the ORL database. Experiments with TV drama videos showed that the proposed method achieved a 94.6% detection rate, which is a higher performance level than that achievable by the method that uses gray values with an SVM.

  • PDF

Flexure Error Analysis of RLG based INS (링레이저 자이로 관성항법시스템의 편향 오차 해석)

  • Kim Kwang-Jin;Yu Myeong-Jong;Park Chan-Gook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.6
    • /
    • pp.608-613
    • /
    • 2006
  • Any input acceleration that bends RLG dithering axis causes flexure error, which is a source of the noncommutative error that can not be compensated by simply using integrated gyro sensor output. This paper introduces noncommutative error equations that define attitude errors caused by flexure errors. In this paper, flexure error is classified as sensor level error if the sensing axis coincides with the dithering axis and as system level error if the two axes do not coincide. The relationship between gyro output and the rotation vector is introduced and is used to define the coordinate transformation matrix and angular motion. Equations are derived for both sensor level and system level flexure error analysis. These equations show that RLG based INS attitude error caused by flexure is directly proportional to time, amount of input acceleration and the dynamic frequency of the vehicle.

Robust 2-D Object Recognition Using Bispectrum and LVQ Neural Classifier

  • HanSoowhan;woon, Woo-Young
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.10a
    • /
    • pp.255-262
    • /
    • 1998
  • This paper presents a translation, rotation and scale invariant methodology for the recognition of closed planar shape images using the bispectrum of a contour sequence and the learning vector quantization(LVQ) neural classifier. The contour sequences obtained from the closed planar images represent the Euclidean distance between the centroid and all boundary pixels of the shape, and are related to the overall shape of the images. The higher order spectra based on third order cumulants is applied to tihs contour sample to extract fifteen bispectral feature vectors for each planar image. There feature vector, which are invariant to shape translation, rotation and scale transformation, can be used to represent two0dimensional planar images and are fed into a neural network classifier. The LVQ architecture is chosen as a neural classifier because the network is easy and fast to train, the structure is relatively simple. The experimental recognition processes with eight different hapes of aircraft images are presented to illustrate the high performance of this proposed method even the target images are significantly corrupted by noise.

  • PDF

Analogical Face Generation based on Feature Points

  • Yoon, Andy Kyung-yong;Park, Ki-cheul;Oh, Duck-kyo;Cho, Hye-young;Jang, Jung-hyuk
    • Journal of Multimedia Information System
    • /
    • v.6 no.1
    • /
    • pp.15-22
    • /
    • 2019
  • There are many ways to perform face recognition. The first step of face recognition is the face detection step. If the face is not found in the first step, the face recognition fails. Face detection research has many difficulties because it can be varied according to face size change, left and right rotation and up and down rotation, side face and front face, facial expression, and light condition. In this study, facial features are extracted and the extracted features are geometrically reconstructed in order to improve face recognition rate in extracted face region. Also, it is aimed to adjust face angle using reconstructed facial feature vector, and to improve recognition rate for each face angle. In the recognition attempt using the result after the geometric reconstruction, both the up and down and the left and right facial angles have improved recognition performance.

On the Study of Rotation Invariant Object Recognition (회전불변 객체 인식에 관한 연구)

  • Alom, Md. Zahangir;Lee, Hyo Jong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2010.04a
    • /
    • pp.405-408
    • /
    • 2010
  • This paper presents a new feature extraction technique, correlation coefficient and Manhattan distance (MD) based method for recognition of rotated object in an image. This paper also represented a new concept of intensity invariant. We extracted global features of an image and converts a large size image into a one-dimensional vector called circular feature vector's (CFVs). An especial advantage of the proposed technique is that the extracted features are same even if original image is rotated with rotation angles 1 to 360 or rotated. The proposed technique is based on fuzzy sets and finally we have recognized the object by using histogram matching, correlation coefficient and manhattan distance of the objects. The proposed approach is very easy in implementation and it has implemented in Matlab7 on Windows XP. The experimental results have demonstrated that the proposed approach performs successfully on a variety of small as well as large scale rotated images.

A Study on the Pseudoinverse Kinematic Motion Control of 6-Axis Arc Welding Robot (6축 아크 용접 로보트의 의사 역기구학적 동작 제어에 관한 연구)

  • Choi, Jin-Seob;Kim, Dong-Won;Yang, Sung-Mo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.2
    • /
    • pp.170-177
    • /
    • 1993
  • In robotic arc welding, the roll (rotation) of the torch about its direction vector does not have any effect on the welding operation. Thus we could use this redundant degree of greedom for the motion control of the robot manipulator. This paper presents an algorithm for the pseudo- inverse kinematic motion control of the 6-axis robot, which utilizes the above mentioned redunancy. The prototype welding operation and the tool path are also graphically simulated. Since the proposed algorithm requires only the position and normal vector of the weldine as an input data, it is useful for the CAD-based off-line programming of the arc welding robot. In addition, it also has the advantages of the redundant manipulator motion control, like singularity avoidance and collision free motion planning, when compared with the other motion control method based on the direct inverse kinematics.

  • PDF