Browse > Article
http://dx.doi.org/10.9708/jksci.2014.19.5.043

Gravity Removal and Vector Rotation Algorithm for Step counting using a 3-axis MEMS accelerometer  

Kim, Seung-Young (Dept. of Computer Information and Science, Inha University)
Kwon, Gu-In (Dept. of Computer Information and Science, Inha University)
Abstract
In this paper, we propose Gravity Removal and Vector Rotation algorithm for counting steps of wearable device, and we evaluated the proposed GRVR algorithm with Micro-Electro-Mechanical (MEMS) 3-axis accelerometer equipped in low-power wearable device while the device is mounted on various positions of a walking or running person. By applying low-pass filter, the gravity elements are canceled from acceleration on each axis of yaw, pitch and roll. In addition to DC-bias removal and the low-pass filtering, the proposed GRVR calculates acceleration only on the yaw-axis while a person is walking or running thus we count the step even if the wearable device's axis are rotated during walking or running. The experimental result shows 99.4% accuracies for the cases where the wearable device is mounted in the middle and on the right of the belt, and 91.1% accuracy which is more accurate than 83% of commercial 3-axis pedometer when worn on wrist for the case of axis-rotation.
Keywords
Wearable device; 3-axis accelerometer; Gravity Removal and Vector Rotation algorithm;
Citations & Related Records
연도 인용수 순위
  • Reference
1 N. Zhao, Full-featured pedometer design realized with 3-axis digital accelerometer, ANALOG DIALOGUE 44-06, June 2010.
2 CMA3000-D01 3-axis ultra low power accelerometer with digital SPI and I2C interface, VTI Technologies.
3 P. L. Schneider, S. E. Crouter, and D. R. Basset, Jr, Pedometer measures of free-living physical activity: comparison of 13 Models, MEDICINE AND SCIENCE IN SPORTS AND EXERCISE, Vol. 36, No. 2, pp.331-5, 2004.   DOI   ScienceOn
4 S. Y. Cho, C. G. Park, and J. G. Lee, A personal navigation system using low-cost MEMS/GPS/Fluxgate, ION 59TH ANNUAL MEETING /CIGTF 22ND GUIDENCE TEST SYMPOSIUM, Albuquerque, NM, 23-25 June 2003.
5 P. L. Schneider, S. E. Crouter, O. Lukajic and D. R. Bassett, Jr, Accuracy and reliability of 10 pedometers for measuring steps over a 400-m walk, MEDICINE AND SCIENCE IN SPORTS AND EXERCISE, Vol. 3, No. 10, pp. 1779-84, Oct. 2003.
6 Texas Instruments, eZ430-ChronosTM Development Tool User's Guide, Dec. 2010.
7 A. R. Jimenez, F. Seco, C. Prieto, and J. Guevara., A comparison of pedestrian dead-reckoning algorithms using a low-cost MEMS IMU, 6TH IEEE INTERNATIONAL SYMPOSIUM OF INTELLIGENT SIGNAL PROCESSING, WSIP 2009 26-28 August, 2009.
8 A. Milenkovic, C. Otto, and E. Jovanov, Wireless sensor networks for personal health monitoring: issues and an Implementation.
9 A. AKAHORI, Y. KISHIMOTO and K. Oguri, Estimate activity for M-health using one three-axis accelerometer, 3RD IEEE-EMBS, INTERNATIONAL SUMMER SCHOOL. IEEE-EMBS, MIT, Sept. 4-6, 2006.
10 B. E. Ainsworth, W. L. Haskell, M. C. Whitt, M. L. Irwin, A. M. Swartz, S. J. Strath, W. L. O'Brien, D. R. Bassett, Jr, K. H. Schmitz, P. O. Emplaincourt, D. R. Jacobs, Jr, and A. S. Leon, Compendium of physical activities: an update of activity codes and MET intensities, Medicine and Science in Sports and Exercise Vol. 32 S498-S516, 2000.   DOI
11 E. L. Melanson, J. R. Troll, M. L. Bell, W. T. Donahoo, J. O. Hill, L. J. Ynjje, L. Lennigham-Foster, J. C. Beters, and J. S. Levinre, Commercially available pedometers: considerations for accurate step counting, PREVENTIVE MEDICINE Vol. 39, 2004.
12 T.M. Ahola, Pedometer for running activity using accelerometer sensors on the wrist, MEDICAL EQUIPMENT INSIGHTS Vol. 3, 2010.
13 J. W. Kim, H. J. Jang, D. H. Hwang, and C. S. Park, A step, stride and heading determination for the pedestrian navigation system, JOURNAL OF GLOBAL POSITIONING SYSTEMS, Vol. 3, No. 1-2, pp273-279, 2004.   DOI
14 C. G. Ryan, P. M. Grant, W. W. Tigbe, and M. H. Granat. Br J, The validity and reliability of a novel activity monitor as a measure of walking, British Journal of Sports Medicine, Vol. 40, pp. 779-784, 2006.   DOI   ScienceOn
15 A. L. G Meijer, K. R. Westerterp, F. M. H. Verhoeven, H. B. M. Koper, and F. ten Hoor, Methods to assess physical activity with special reference to motion sensors and accelerometers, IEEE TRACTIONS OF ON BIOMEDICAL ENGINEERING, Vol. 38, No. 3, Mar. 1991.
16 D. M. Bravata, C. S. Spangler, Using pedometers to increase physical activity and improve health, Journal of the American Medical Association, Vol. 298. No. 19, Nov. 2007.
17 ACSM metabolic equations, http://blue.utb.edu/mbailey/handouts/pdf/MetCalnew.pdf
18 Y. Kawahara, N. Ryu, T. Asami, Monitoring daily energy expenditure using 3-axis accelerometer with a low-power microprocessor, e-minds, Vol. 1, No. 5,2009(www.eminds.hci-rg.com).