• Title/Summary/Keyword: rotation speed

Search Result 1,155, Processing Time 0.023 seconds

A Study on the Method of High-Speed Reading of Postal 4-state Bar Code for Supporting Automatic Processing (우편용 4-state 바코드 고속판독 방법에 관한 연구)

  • Park, Moon-Sung;Kim, Hye-Kyu;Jung, Hoe-Kyung
    • The KIPS Transactions:PartD
    • /
    • v.8D no.3
    • /
    • pp.285-294
    • /
    • 2001
  • Recently many efforts on the development of automatic processing system for delivery sequency sorting have been performed in ETRI, which requires the use of postal 4-state bar code system to encode delivery points. This paper addresses the issue on the extension of read range and the improvement of image processing method. For the improvement of image processing procedure, applied information acquisition method through basic two thresholds onto the horizontal axial line of gray image based on reference information of 4-state bar code symbology. Symbol values are computed after creating two threshold values based on the obtained information through search of horizontal axial values. The implementation result of 4-state bar code reader are obtained the symbol values within 30~60 msec (58,000~116,000 mail item/hour)without noise removal or image rotation in spite of the incline $\pm 45^{\circ}$.

  • PDF

The effect of Thermal Distribution on $LaSc_3(BO_3)_4$ Crystal Growth by Cz Method ($LaSc_3(BO_3)_4$ 단결정 성장조건)

  • 장영남;배인국
    • Korean Journal of Crystallography
    • /
    • v.9 no.1
    • /
    • pp.21-29
    • /
    • 1998
  • The rare-earth orthoborate family, RM3(BO3)4 is known to be the most promising material for the microlaser host. To grow LaSc3(BO3)4 single crystal, the phase relation of the system LaBO3-ScBO3 was investigated by DTA method. LaSc(BO3)4 was the unique intermediate compound in the binary system the peritectic reaction point of which was 1495 ±2℃. Owing to the peritectic behavior of the compound, the crystal growth of the rare-earth Sc-borate was carried out by pulling from the melt-soultion of La1+xSc3-x(BO3)4. The optimal conditions for the growth of LaSc3(BO3)4 were determined by traditional CZ method : pulling speed 0.7mm/hr, rotation speed 7-10 rpm under reduction condition. Pt and Ir crucibles could be used for about 8-10 times of growth. The effect of thermal configurations on the temperature distribution was investigated. A special two-coordinate manipulator was made for the precise movement of thermocouples from the melt to the top of the furnace for several thermal configurations. The radial gradient on the melt surface depends strongly on the construction of the afterheater. On the other hand, the axial gradient was mainly propotional to both the opening degree of baffle plate and the mutual positions of crucible and heater.

  • PDF

Development of an Underwater Rope-cutter Device and Controller for Removal of Propeller and Shaft Foreign Material for Small Vessel (소형선박용 프로펠러 및 샤프트 이물질 제거를 위한 수중절단기 기구 설계 및 제어기 개발)

  • Lee, Hunseok;Oh, Jin-Seok;Choi, Sun-Hong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.7
    • /
    • pp.927-935
    • /
    • 2019
  • Screw-failure accidents in small ships frequently occur in coastal waters. In particular, vessels' propulsion systems are frequently coiled due to objects such as fish-nets and ropes that float on the sea. The failure of the ship's propulsion system can cause primary accidents such as ship operation delays and drifting due to loss of power; furthermore, the possibility of secondary accidents such as those involving operators in the underwater removal of rope stuck in a propeller. Ships that do not have the proper tools to solve these problems must be either lifted onto land to be repaired or divers must dive directly under the ship to solve the problem. Accordingly, some small vessels have been equipped with rope-cutter devices on the propeller shaft to prevent ship propeller system accidents in recent years; however, they are not being applied efficiently due to the cost and time of installation. To solve these problems, this study develops an underwater rope-cutter device and controller for the removal of propeller and shaft foreign material in small vessels. This device has simple structures that use the principle of a saw. Meteor gears and crank pins were used for the straight-line rotation of saw blades of the underwater rope-cutters to allow for long strokes. Furthermore, the underwater rope-cutting machines can be operated by being connected to the ship battery. The user, a non-professional, can ensure convenience and stability by applying reverse current prevention and a speed control circuit so that it can be used more conveniently and safely.

A Study on Numerical Analysis for Internal PEMFC Cooling of Power Pack for UPS (UPS 파워 팩 내부 연료전지의 냉각특성에 대한 수치 해석)

  • Song, Jun-Seok;Kim, Byeong-Heon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.4
    • /
    • pp.527-535
    • /
    • 2017
  • Heat management is one of the most critical issues in Polymer Electrolyte Membrane Fuel Cells (PEMFCs) installed inside the fuel cell power pack of a fuel cell battery hybrid UPS. If the heat generated by the chemical reaction in the fuel cell is not rapidly removed, the durability and performance of the fuel cell may be affected, which may shorten its lifetime. Therefore, the objective of this study is to select and propose a proper cooling method for the fuel cells used in the fuel cell power pack of a UPS. In order to find the most appropriate cooling method, the various design factors affecting the cooling performance were studied. The numerical analysis was performed by a commercial program, i.e., COMSOL Multiphysics. Firstly, the surface temperature of the 1 kW class fuel cell stack with the cooling fans placed at the top was compared with the one with the cooling fans placed at the bottom. Various rotation speeds of the cooling fan, viz. 2,500, 3,000, 3,500, and 4,000 RPM, were tested to determine the proper cooling fan speed. In addition, the influence of the inhaled air flow rate was investigated by changing the porous area of the grille, which is the entrance of the air flowing from the outside to the inside of the power pack. As a result, it was found that for the operating conditions of the 1 kW class PEMFC to be acceptable, the cooling fan was required to have a minimum rotating speed of 3500 RPM to maintain the fuel cell surface temperature within an acceptable range. The results of this study can be effectively applied to the development of thermal management technology for the fuel cells inside the fuel cell power pack of a UPS.

A Study on Structural Characteristics of Axial Fans Operating Speed Using Finite Element Analysis (유한요소해석을 이용한 축류팬 운전속도별 구조특성에 대한 연구)

  • Kook, Jeong-Keun;Cho, Byung-Kwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.2
    • /
    • pp.593-601
    • /
    • 2021
  • The axial fan is an element of a blower used for ventilation in various industrial fields. Many studies on aerodynamic performance have been conducted to assess axial fans using fluid dynamics. The subject was a large axial fan size, 1800 mm in diameter with 100 horsepower. The blower's axial fan consisted of blades, hubs, hub caps, and bosses are important components. The blade design has a great influence on the aerodynamic performance. 3D point data is extracted using an aerodynamic performance prediction program, and a 3D modeling shape is generated. The blades and hubs, which are important components, can be easily modified if processed by cutting owing to the environment in which blades and hubs are manufactured through die casting or gravity casting. In this study, the structural safety of components and the analysis results of weak areas at the rated operating speed of the axial fan were verified using the maximum stress and safety factor. The tip clearance reflected in the design was the rotation of the blade. To check whether there is interference with other components, the displacement result was derived to verify the structural safety of the axial fan.

Analysis of Traction Performance for Agricultural Tractor According to Soil Condition (토양 조건에 따른 농업용 트랙터의 견인 성능 분석)

  • Lee, Nam Gyu;Kim, Yong Joo;Baek, Seung Min;Moon, Seok Pyo;Park, Seong Un;Choi, Young Soo;Choi, Chang Hyun
    • Journal of Drive and Control
    • /
    • v.17 no.4
    • /
    • pp.133-140
    • /
    • 2020
  • Traction performance of a tractor varies depending on soil conditions. Sinkage and slip of the driving wheel for tractor frequently occur in a reclaimed land. The objective of this study was to develop a tractor suitable for a reclaimed land. Traction performance was evaluated according to soil conditions of reclaimed land and paddy field. Field experiments were conducted at two test sites (Fields A: paddy field; and Field B: reclaimed land). The tractor load measurement system was composed of an axle rotation speed sensor, a torque meter, a six-component load cell, GPS, and a DAQ (Data Acquisition System). Soil properties including soil texture, water content, cone index, and electrical conductivity (EC) were measured. Referring to previous researches, the tractor traveling speed was set to B3 (7.05 km/h), which was frequently used in ridge plow tillage. Soil moisture contents were 33.2% and 48.6% in fields A and B, respectively. Cone index was 2.1 times higher in field A than in field B. When working in the reclaimed land, slip ratios were about 10.5% and 33.1% for fields A and B, respectively. The engine load was used almost 100% of all tractors under the two field conditions. Traction powers were 31.9 kW and 24.2 kW for fields A and B, respectively. Tractive efficiencies were 83.3% and 54.4% for fields A and B, respectively. As soil moisture increased by 16.4%, the tractive efficiency was lowered by about 28.9%. Traction performance of tractor was significantly different according to soil conditions of fields A and B. Therefore, it is necessary to improve the traction performance of tractor for smooth operations in all soil conditions including a reclaimed land by reflecting data of this study.

Development of CanSat System for Collecting Weather Information With Autorotating Science Payload Ejection Function (자동회전 과학 탑재체 사출 기능을 갖춘 기상정보 수집용 캔위성 체계 개발)

  • Kim, Youngjun;Park, Junsoo;Nam, Jaeyoung;Lee, Junhyuck;Choi, Yunwon;Yoo, Seunghoon;Lee, Sanghyun;Lee, Younggun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.8
    • /
    • pp.573-581
    • /
    • 2022
  • This paper deals with the development of CanSat system, which ejects two maple seed-type autorotating science payloads and collects weather information. The CanSat consists of two autorotating science payloads and a container. The container is equipped with devices for launching science payloads and communication with the ground station, and launches science payloads one by one at different designated altitudes. The science payload consists of a space for loading and a large wing, and rotates to generate lift for slowing down the fall speed. Specifically, after being ejected, it descends at a speed of 20 m/s or less, measures the rotation rate, atmospheric pressure, and temperature, and transmits the measured value to the container at a rate of once per second. The communication system is a master-slave structure, and the science payload transmits all data to the master container, which aggregates both the received data and its own data, and transmits it to the ground station. All telemetry can be checked in real time using the ground station software developed in-house. A simulation was performed in the simulation environment, and the performance of the CanSat system that satisfies the mission requirements was confirmed.

Comparison of Micro Mobility Patterns of Public Bicycles Before and After the Pandemic: A Case Study in Seoul (팬데믹 전후 공공자전거의 마이크로 모빌리티 패턴 비교: 서울시 사례 연구)

  • Jae-Hee Cho;Ga-Eun Baek;Il-Jung Seo
    • The Journal of Bigdata
    • /
    • v.7 no.2
    • /
    • pp.235-244
    • /
    • 2022
  • The rental history data of public bicycles in Seoul were analyzed to examine how pandemic phenomena such as COVID-19 caused changes in people's micro mobility. Data for 2019 and 2021 were compared and analyzed by dividing them before and after COVID-19. Data were collected from public data portal sites, and data marts were created for in-depth analysis. In order to compare the changes in the two periods, the riding direction type dimension and the rental station type dimension were added, and the derived variables (rotation rate per unit, riding speed) were newly created. There is no significant difference in the average rental time before and after COVID-19, but the average rental distance and average usage speed decreased. Even in the mobility of Ttareungi, you can see the slow rhythm of daily life. On weekdays, the usage rate was the highest during commuting hours even before COVID-19, but it increased rapidly after COVID-19. It can be interpreted that people who are concerned about infection prefer Ttareungi to village buses as a means of micro-mobility. The results of data mart-based visualization and analysis proposed in this study will be able to provide insight into public bicycle operation and policy development. In future studies, it is necessary to combine SNS data such as Twitter and Instagram with public bicycle rental history data. It is expected that the value of related research can be improved by examining the behavior of bike users in various places.

Improvement of Rotary Tine for Barley Seeder Attached to Rotary Tiller (로우터리 맥류파종기 경운날의 개량시험)

  • 김성래;김문규;김기대;허윤근
    • Journal of Biosystems Engineering
    • /
    • v.4 no.1
    • /
    • pp.1-23
    • /
    • 1979
  • The use of barley seeder attached to rotary tiller in the rural area has a significant meaning not only for the solution of labor peak season, but also for the increase of land utilization efficiency. The facts that presently being used barley seeders are all based on the mechanical principles of the reverse rotation, center drive and are all using forward rotating tine, which is used to be easily and heavily worn out when it rotates reversely, raise problem of recommending them to rural area in Korea. Therefore, the main objective of the study was to develop new type of rotary tine attachable to barley seeders. To attain the objective the following approaches were applied. (1) The kinematic analysis of reverse rotating barley seeders. (2) The studies on the soil bin and artificial soil. (3) The comparative experiment on the power requirement of prototype tine. The results obtained from the studies are summarized as follow: 1. The kinematic analysis of barley seeder attached to rotary tiller: The following results were obtained from the kinematic analysis for deriving general formulae of the motion and velocity characterizing the rotary tine of barley seeders presently being used by farmers. a) The position vector (P) of edge point (P) in the rotary tine of reverse rotating, center drive was obtained by the following formula. $$P=(vt+Rcos wt)i+Rsin wt j+ \{ Rcos \theta r sin \alpha cos (wt- \beta +\theta r) +Rsin \theta r sin \alpha sin (wt-\beta + \theta r) \} lk $$ b) The velocity of edge point $(P^')$ of reverse rotating, center drive rotary tine was obtained by the following formula. $$(P^')=(V-wR sin wt)i+(w\cdot Rcoswt)j + \{ -w\cdot Rcos \theta r\cdot sin \alpha \cdot sin (wt-\beta +\theta r) + w\cdot Rsin \theta r\cdot sin \alpha \cdot cos (wt- \beta + \theta r \} k $$ c) In order to reduce the power requirement of rotary tine, the angle between holder and edge point was desired to be reduced. d) In order to reduce the power requirement, the edge point of rotary tine should be moved from the angle at the begining of cutting to center line of machine, and the additional cutting width should be also reduced. 2. The studies on the soil bin and artificial soil: In order to measure the power requirement of various cutting tines under the same physical condition of soil, the indoor experiments Viere conducted by filling soil bin with artificially made soil similar to the common paddy soil and the results were as follows: a) When the rolling frequencies$(x)$ of the artificial soil were increased, the densIty$(Y)$ was also increased as follows: $$y=1.073200 +0.070780x - 0.002263x^2 (g/cm^3)$$ b) The absolute hardness $(Y)$ of soil had following relationship with the rolling frequencies$(x)$ and were increased as the rolling frequencies were increased. $$Y=37.74 - \frac {0.64 + 0.17x-0. 0054x^2} {(3.36-0.17x + 0.0054x^2)^3} (kg/cm^3)$$ c) The density of soil had significant effect on the cohesion and angle of internal friction of soil. For instance, the soil with density of 1.6 to 1.75 had equivalent density of sandy loam soil with 29.5% of natural soil moisture content. d) The coefficient of kinetiic friction of iron plate on artificial soil was 0.31 to 0.41 and was comparable with that of the natural soil. e) When the pulling speed of soil bin was the 2nd forward speed of power tiller, the rpm of driving shaft of rotary was similar to that of power tiller, soil bin apparatus is indicating the good indoor tester. 3. The comparative experiment on the power requirement of prototype tine of reverse rotating rotary: According to the preliminary test of rotary tine developed with various degrees of angle between holder and edge pcint due to the kinematic analysis, comparative test between prototype rotary tine with $30 ^\circ $ and $10 ^\circ$ of it and presently being used rotary tine was carried out 2nd the results were as follows: a) The total cutting torque was low when the angle between holder and edge point was reduced. b) $\theta r$ (angle between holder and edge point) of rotary tine seemed to be one: of the factors maximizing the increase of torque. c) As the angle between holder and edge point ($\theta r$) of rotary tine was $30 ^\circ $ rather than $45 ^\circ $, the angle of rotation during cutting soil was reduced and the total cutting torque was accordingly reduced about 10%, and the reduction efficiency of total cutting torque was low when the angle between holder and edge point ($\theta r$) of rotary tine was $10 ^\circ $, which indicates that the proper angle between holder and edge point of rotary tine should be larger than $10 ^\circ $ and smaller than $30 ^\circ $ . From above results, it could be concluded that the use of the prototype rotary tine which reduced the angle between holder and edge point to $30 ^\circ $, insted of $45 ^\circ $, is disirable not only decreasing the power requirements, but also increasing the durabie hour of it. Also forward researches are needed, WIlich determine the optimum tilted angle of rotary brocket, and rearrangement of the rotary tine on the rotary boss.

  • PDF

A Fluid Analysis Study on Centrifugal Pump Performance Improvement by Impeller Modification (원심펌프 회전차 Modification시 성능개선에 관한 유동해석 연구)

  • Lee, A-Yeong;Jang, Hyun-Jun;Lee, Jin-Woo;Cho, Won-Jeong
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.2
    • /
    • pp.1-8
    • /
    • 2020
  • Centrifugal pump is a facility that transfers energy to fluid through centrifugal force, which is usually generated by rotating the impeller at high speed, and is a major process facility used in many LNG production bases such as vaporization seawater pump, industrial water and fire extinguishing pump using seawater. to be. Currently, pumps in LNG plant sites are subject to operating conditions that vary depending on the amount of supply desired by the customer for a long period of time. Pumps in particular occupy a large part of the consumption strategy at the plant site, and if the optimum operation condition is not available, it can incur enormous energy loss in long term plant operation. In order to solve this problem, it is necessary to identify the performance deterioration factor through the flow analysis and the result analysis according to the fluctuations of the pump's operating conditions and to determine the optimal operation efficiency. In order to evaluate operation efficiency through experimental techniques, considerable time and cost are incurred, such as on-site operating conditions and manufacturing of experimental equipment. If the performance of the pump is not suitable for the site, and the performance of the pump needs to be reduced, a method of changing the rotation speed or using a special liquid containing high viscosity or solids is used. Especially, in order to prevent disruptions in the operation of LNG production bases, a technology is required to satisfy the required performance conditions by processing the existing impeller of the pump within a short time. Therefore, in this study, the rotation difference of the pump was applied to the ANSYS CFX program by applying the modified 3D modeling shape. In addition, the results obtained from the flow analysis and the curve fitting toolbox of the MATLAB program were analyzed numerically to verify the outer diameter correction theory.