• 제목/요약/키워드: rotation matrix

검색결과 224건 처리시간 0.028초

EFFECT OF MICROSTRUCTURE ON MECHANICAL PROPERTIES IN FRICTION STIR WELDED CAST A356 ALUMINUM ALLOY

  • Sato, Yutaka S.;Kaneko, Takayasu;Urata, Mitsunori;Kokawa, Hiroyuki
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2002년도 Proceedings of the International Welding/Joining Conference-Korea
    • /
    • pp.493-498
    • /
    • 2002
  • Friction stir welding (FSW) is a relatively new solid-state joining process which can homogenize the heterogeneous microstructure by intensely plastic deformation arising from the rotation of the welding tool. The present study applied the FSW to an A356 aluminum (AI) alloy with the as-cast heterogeneous microstructure in the T6 temper condition, and examined an effect of microstructure on mechanical properties in the weld. The base material consisted of Al matrix with a high density of strengthening precipitates, large eutectic silicon and a lot of porosities. The FSW led to fragment of the eutectic silicon, extinction of the porosities and dissolution of the strengthening precipitates in the Al alloy. The dissolution of strengthening precipitates reduced the hardness of the weld around the weld center and the transverse ultimate tensile strength of the weld. Longitudinal tensile specimen containing only the stir zone showed the roughly same strength as the base material and a much larger elongation. Moreover, Charpy impact tests indicated that the stir zone had remarkably the higher absorbed energy than the base material. The higher mechanical properties of the stir zone were attributed to a homogenization of the as-cast heterogeneous microstructure by FSW.

  • PDF

유한요소 다결정 모델을 이용한 마그네슘 합금 AZ31B 판재의 압연 집합 조직 예측 (Prediction of Rolling Texture for Mg Alloy AZ31B Sheet using Finite Element Polycrystal Model)

  • 원성연;김영석;나경환
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2004년도 제5회 압연심포지엄 신 시장 개척을 위한 압연기술
    • /
    • pp.72-82
    • /
    • 2004
  • The deformation mechanism of hexagonal close-packed materials is quite complicate including slips and twins. A deformation mechanism, which accounts for both slip and twinning, was investigated for polycrystalline hop materials. The model was developed in a finite element polycrystal model formulated with initial strain method where the stiffness matrix in FEM is based on the elastic modulus. We predicted numerically the texture of Mg alloy(AZ31B) sheet by using FEM based on crystal plasticity theory. Also, we introduced the recrystallized texture employed the maximum energy release theory after rolling. From the numerical study, it was clarified that the shrink twin could not be the main mechanism for shortening of c-axis, because the lattice rotation due to twin rejects fur c-axis to become parallel to ND(normal direction of plate). It was showed that the deformation texture with the pyramidal slip gives the ring type pole figure having hole in the center.

  • PDF

속도의존성 결정소성 모델 기반의 유한요소해석을 통한 BCC 금속의 변형 집합조직 예측 (Prediction of Deformation Texture in BCC Metals based on Rate-dependent Crystal Plasticity Finite Element Analysis)

  • 김동규;김재민;박원웅;임용택;이용신
    • 소성∙가공
    • /
    • 제23권4호
    • /
    • pp.231-237
    • /
    • 2014
  • In the current study, a rate-dependent crystal plasticity finite element method (CPFEM) was used to simulate flow stress behavior and texture evolution of a body-centered cubic (BCC) crystalline material during plastic deformation at room temperature. To account for crystallographic slip and rotation, a rate-dependent crystal constitutive law with a hardening model was incorporated into an in-house finite element program, CAMPform3D. Microstructural heterogeneity and anisotropy were handled by assigning a crystallographic orientation to each integration point of the element and determining the stiffness matrix of the individual crystal. Uniaxial tensile tests of single crystals with different crystallographic orientations were simulated to determine the material parameters in the hardening model. The texture evolution during four different deformation modes - uniaxial tension, uniaxial compression, channel die compression, and simple shear deformation - was investigated based on the comparison with experimental data available in the literature.

도래방향 추정을 위한 유니터리 MUSIC 알고리즘의 FPGA 구현 (FPGA Implementation of Unitary MUSIC Algorithm for DoA Estimation)

  • 주우용;이경선;정봉식
    • 융합신호처리학회논문지
    • /
    • 제11권1호
    • /
    • pp.41-46
    • /
    • 2010
  • 본 논문은 도래방향 추정법의 하나인 유니터리 MUSIC(MUltiple SIgnal Classification) 알고리즘의 하드웨어 구현에 대한 것이다. 이 알고리즘은 복소 상관행렬을 유니터리 변환(Unitary transform)을 통해 실수 상관행렬로 변환하여 하드웨어 구현을 쉽게 할 수 있다. 실수 상관행렬의 고유치와 고유벡터는 Jacobi법에 ADD와 SHIFT만으로 구현이 가능한 CORDIC(COordinate Rotation DIgital Computer) 알고리즘을 접목한 Jacobi-CORDIC 알고리즘으로 구하였다. 또한 256점 DFT(Discrete Fourier Transform)를 적용하여 각도 스펙트럼을 구하고, 스펙트럼의 검색으로 도래각을 추정하였다. 본 논문에서는 알고리즘의 하드웨어 구현을 위해 System Generator를 이용하여 설계하였다. 최종 설계된 DoA 추정 시스템은 Matlab 시뮬레이션 결과와 비교하여 일치된 결과를 얻었고, Hardware Co-Sim을 통해 System Generator 설계 결과를 검증하였다.

변형된 질의 영상에 강한 내용 기반 영상 검색 기법 (A Robust Content-Based Image Retrieval Technique for Distorted Query Image)

  • 김익재;이제호;권용무;박상희
    • 방송공학회논문지
    • /
    • 제2권1호
    • /
    • pp.74-83
    • /
    • 1997
  • 본 논문에서는 칼라 영상 검색을 위한 특징으로서 칼라 정보와 모양 정보를 고려하는 복합적인 특징벡터를 사용한 영상 검색 기법을 제안하였다. 비균둥 양자화 방법인 Lloyd-Max quantizer를 통한 효율적인 칼라 양자화를 하였고, 양자화를 거친 후 생성된 칼라 그룹간의 공간적 분포상황을 고려하기 위해 히스토그램 행렬을 도입함으로써 칼라 정보를 기반으로한 검색 효율을 증대시켰다. 또한 모양 정보를 획득하기 위해 향상된 불변 모멘트를 사용함으로써 연산량을 줄이면서, 검색 효율을 증대시켰다. 영상으로 200여개의 칼라 트레이드마크를 사용하여 기존의 방법들과의 비교실험을 통해 원영상 뿐만 아니라 변형된 영상에 대해서 보다 향상된 검색 결과를 얻을 수 있었다. 즉, 영상내의 물체의 회전, 이동, 잡음 첨가와 감마 보정값 등에 의해 변형된 영상에 대해서 보다 더 강한 결과를 얻을 수 있었다.

  • PDF

Feature Based Multi-Resolution Registration of Blurred Images for Image Mosaic

  • Fang, Xianyong;Luo, Bin;He, Biao;Wu, Hao
    • International Journal of CAD/CAM
    • /
    • 제9권1호
    • /
    • pp.37-46
    • /
    • 2010
  • Existing methods for the registration of blurred images are efficient for the artificially blurred images or a planar registration, but not suitable for the naturally blurred images existing in the real image mosaic process. In this paper, we attempt to resolve this problem and propose a method for a distortion-free stitching of naturally blurred images for image mosaic. It adopts a multi-resolution and robust feature based inter-layer mosaic together. In each layer, Harris corner detector is chosen to effectively detect features and RANSAC is used to find reliable matches for further calibration as well as an initial homography as the initial motion of next layer. Simplex and subspace trust region methods are used consequently to estimate the stable focal length and rotation matrix through the transformation property of feature matches. In order to stitch multiple images together, an iterative registration strategy is also adopted to estimate the focal length of each image. Experimental results demonstrate the performance of the proposed method.

메모리 사용률을 개선한 SURF 알고리즘 특징점 추출기의 하드웨어 가속기 설계 (An Implementation of a Feature Extraction Hardware Accelerator based on Memory Usage Improvement SURF Algorithm)

  • 정창민;곽재창;이광엽
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2013년도 추계학술대회
    • /
    • pp.77-80
    • /
    • 2013
  • SURF 알고리즘은 영상의 특징점 검출 및 서술자를 생성하는 알고리즘으로 크기와 회전, 조명 및 시점 등의 환경 변화에 강인한 특징을 가지고 있다. 이러한 특징 때문에 객체 인식, 파노라마 이미지, 3차원 영상 복원 등 영상처리 분야에서 많이 사용되고 있다. 하지만 SURF 알고리즘과 같은 대부분의 인식 알고리즘은 많은 양의 연산을 필요로 하기 때문에 실시간 구현이 어렵다. 본 논문은 SURF의 메모리 접근 횟수와 메모리 사용량을 분석하여 효율적인 메모리를 설계함으로써 메모리 접근 횟수와 메모리 사용량을 최소화하여 실시간 구현이 가능하도록 설계하였다.

  • PDF

Color Stabilization of Low Toxic Antimicrobial Polypropylene/Poly(hexamethylene guanidine) Phosphate Blends by Taguchi Technique

  • Lee, Sang-Mook;Lee, Jae-Wook
    • Macromolecular Research
    • /
    • 제17권6호
    • /
    • pp.411-416
    • /
    • 2009
  • The color stabilization of antimicrobial blends was studied by using poly(hexamethylene guanidine) phosphate (PHMG) as a highly efficient biocidal and nontoxic agent. The Taguchi method was used to determine the optimum conditions for the blending of PHMG in polypropylene (PP) matrix. To improve the yellowing phenomena, two kinds of stabilizer were used together: tetrakis[methylene(3,5-di-t-butyl-4-hydroxyhydrocinnamate)](IN1010) from phenol and tris(2,4-di-t-butylphenylphosphite) (IF168) from phosphorus. According to blend composition and mixing condition, six factors were chosen, with five levels being set for each factor. The orthogonal array was selected as the most suitable for fabricating the experimental design, L25, with 6 columns and 25 variations. The-smaller-the-better was used as an optimization criterion. The optimum conditions for these parameters were 10 phr for PHMG, 2 phr for IN1010, 1 phr for IF168, 10 min for mixing time, $210^{\circ}C$ for mixing temperature, and 30 rpm for rotation speed. Under these conditions, the yellowness index of the blend was 1.52. The processibility of the blends was investigated by Advanced Rheometric Expansion System (ARES). The blend with 0.5 w% PHMG content, diluted with PP, exhibited an antimicrobial characteristic in the shake flask method.

Modeling of local buckling in tubular steel frames by using plastic hinges with damage

  • Inglessis, Pether;Medina, Samuel;Lopez, Alexis;Febres, Rafael;Florez-Lopez, Julio
    • Steel and Composite Structures
    • /
    • 제2권1호
    • /
    • pp.21-34
    • /
    • 2002
  • A model of the process of local buckling in tubular steel structural elements is presented. It is assumed that this degrading phenomenon can be lumped at plastic hinges. The model is therefore based on the concept of plastic hinge combined with the methods of continuum damage mechanics. The state of this new kind of inelastic hinge is characterized by two internal variables: the plastic rotation and the damage. The model is valid if only one local buckling appears in the plastic hinge region; for instance, in the case of framed structures subjected to monotonic loadings. Based on this damage model, a new finite element that can describe the development of local buckling is proposed. The element is the assemblage of an elastic beamcolumn and two inelastic hinges at its ends. The stiffness matrix, that depends on the level of damage, the yielding function and the damage evolution law of the two hinges define the new finite element. In order to verify model and finite element, several small-scale frames were tested in laboratory under monotonic loading. A lateral load at the top of the frame was applied in a stroke-controlled mode until local buckling appears and develops in several locations of the frame and its ultimate capacity was reached. These tests were simulated with the new finite element and comparison between model and test is presented and discussed.

Physics based basis function for vibration analysis of high speed rotating beams

  • Ganesh, R.;Ganguli, Ranjan
    • Structural Engineering and Mechanics
    • /
    • 제39권1호
    • /
    • pp.21-46
    • /
    • 2011
  • The natural frequencies of continuous systems depend on the governing partial differential equation and can be numerically estimated using the finite element method. The accuracy and convergence of the finite element method depends on the choice of basis functions. A basis function will generally perform better if it is closely linked to the problem physics. The stiffness matrix is the same for either static or dynamic loading, hence the basis function can be chosen such that it satisfies the static part of the governing differential equation. However, in the case of a rotating beam, an exact closed form solution for the static part of the governing differential equation is not known. In this paper, we try to find an approximate solution for the static part of the governing differential equation for an uniform rotating beam. The error resulting from the approximation is minimized to generate relations between the constants assumed in the solution. This new function is used as a basis function which gives rise to shape functions which depend on position of the element in the beam, material, geometric properties and rotational speed of the beam. The results of finite element analysis with the new basis functions are verified with published literature for uniform and tapered rotating beams under different boundary conditions. Numerical results clearly show the advantage of the current approach at high rotation speeds with a reduction of 10 to 33% in the degrees of freedom required for convergence of the first five modes to four decimal places for an uniform rotating cantilever beam.