• Title/Summary/Keyword: rotating spindle

Search Result 124, Processing Time 0.024 seconds

Model Updating of High-Speed Spindle (초고속 스핀들의 모델 개선법)

  • Park, Ki-Beom;Chung, Won-Jee;Lee, Choon-Man
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.2
    • /
    • pp.7-12
    • /
    • 2008
  • In the design of modem rotating machinery, it is often necessary to increase the performance of rotor-bearing system. Since a critical speed range influences the performance and safety of the whole system, it should be necessary to constrain the critical speed and thus resonance response in design process to result in large vibration. Consequently the minimization of resonance response amplitudes within the operation range of the rotor system becomes the most primary design objective. In this paper, based on the assumption that the external shape of rotating-shaft, bearing supporting positions and etc, the natural frequency analysis of spindle is performed by ANSYS $10.0^{(R)}$ Optimum design is conducted using the RBF model.

A Study on the Active Balancing Method for High Speed Spindle System Using Influence Coefficient (영향계수를 이용한 고속 주축시스템의 자동밸런싱 기법에 관한 연구)

  • Kim, Bong-Seok;Kim, Jong-Su;Lee, Su-Hun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.8
    • /
    • pp.48-53
    • /
    • 2001
  • In order to increase productivity and efficiency, high-speed rotating machines become popular these days. The high-speed rotating machine is likely to vibrate and cause machine failure even though it has small unbalance. Therefore, a balancing technique is studied in this paper. Off-line balancing methods are inadequate to solve unbalance vibration problem occurring in the field due to flexible rotor effect, faster tool change, and shorter spin-up and down, etc. An active balancing is suggested to allow re-balancing of the entire rotating assembly in the machine when a tool is changed. This paper shows how to identify the dynamics of the system using influence coefficient and suggest an active balancing technique based on influence coefficient method for high-speed spindle system.

  • PDF

The Study on the Composition of the Encoder for Driving the High Speed Spindle Motor (고속 스핀들 전동기 구동을 위한 자기식 엔코더 구성에 관한 연구)

  • Choi Cheol;Kim Cheol-U;Lee Sang-Hun
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.5
    • /
    • pp.253-259
    • /
    • 2005
  • Magnetic encoder with relatively low pulse per rotation is generally used for detecting speed of the high-speed rotating machine. It is due to the fact of the mechanical problems of vibration and bearing stiffness and also the limit of maximum output pulse of the mounted encoder. The magnetic encoder is divided into two types, that is, toothed gear-wheel method and magnetic wheel method according to the shape of the rotation disk. In case of detecting speed by the tooth gear-wheel, the encoder itself can be acted as the additional inertia where the number of tooth determining the output pulse and the width of the wheel detecting the change of the magnetic flux density are relatively enough large considering the volume of the rotating machine. While the magnetic wheel method has the limit of the magnetizing number of the ring magnet, there is relatively few, if nv, the influence of inertia on the machine. In this paper, it is proposed a simple magnetic wheel encoder suited for the high speed rotating machine and the method of signal processing and the output characteristics are examined through the V/F operation of max 48,000(rpm) and 2.4(KW) spindle motor.

Runout Control of a Magnetically Suspended High Speed Spindle Using Adaptive Feedforward Method (적응 Feedforward를 이용한 자기베어링 고속 주축계의 전기적 런아웃 제어)

  • 노승국;경진호;박종권
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.12
    • /
    • pp.57-63
    • /
    • 2002
  • In this paper, the feedforward control with least mean square (LMS) adaptive algorithm is proposed and examined to reduce rotating error by runout of an active magnetic bearing system. Using eddy-current type gap sensor fur control, the electrical runout caused by non-uniform material properties of sensor target produces rotational error amplified in feedback control loop, so this runout should be eliminated to increase rotating accuracy. The adaptive feedforward controller is designed and examined its tracking and stability performances numerically with established frequency response function. The tested grinding spindle system is manufactured with a 5.5 ㎾ internal motor and 5-axis active magnetic bearing system including 5 eddy current gap sensors which have approximately 15 ~ 30 ${\mu}{\textrm}{m}$ of electrical runout. According to the experimental analysis, the error signal in radial bearings is reduced to less than 5 ${\mu}{\textrm}{m}$ when it is rotating up to 50,000 rpm due to applying the feedforward control for first order harmonic frequency, and vibration of the spindle base is also reduced about same frequency.

Runout Control of a Magnetically Suspended High Speed Spindle Using Adaptive Feedforward Method

  • Ro Seung-Kook;Kyung Jin-Ho;Park Jong-Kwon
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.6 no.2
    • /
    • pp.19-25
    • /
    • 2005
  • In this paper, the feedforward control with least mean square (LMS) adaptive algorithm is proposed and examined to reduce rotating error by runout of an active magnetic bearing system. Using eddy-current type gap sensors for control, the electrical runout caused by non-uniform material properties of sensor target produces rotational error amplified in feedback control loop, so this runout should be eliminated to increase rotating accuracy. The adaptive feedforward controller is designed and examined its tracking performances and stability numerically with established frequency response function. The designed feedforward controller was applied to a grinding spindle system which is manufactured with a 5.5 kW internal motor and 5-axis active magnetic bearing system including 5 eddy current gap sensors which have approximately 15∼30㎛ of electrical runout. According to the experimental results, the error signal in radial bearings is reduced to less than 5 ,Urn when it is rotating up to 50,000 rpm due to applying the feedforward control for first order harmonic frequency, and corresponding vibration of the spindle is also removed.

2.5 Inch HDD Spindle Vibration with Flexible Base Plate

  • Heo, Bae-Kho
    • 정보저장시스템학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.210-214
    • /
    • 2005
  • The purpose of this paper is to study the effects of the flexibility of HDD base plates on spindle vibration via theoretical predictions and experimental measurements. The flexibility of the base plate can significantly affect HDD spindle vibration. This is the most prominent feature in 2.5 inch HDD. Nevertheless, theoretical analysis of the spindle vibration often neglects the flexibility of the non-rotating part including spindle, base plate, and top cover. Our theoretical model developed in University of Washington can include the flexibilities of spindle and base plate. As a result, our theoretical prediction generally agrees well with our experimental measurements in vibration analysis. Moreover, Because of its small form factor, industrial practice is to use flanged disks instead of regular disks in vibration testing of prototypes. Our experimental measurements indicate that flanged disks and regular disks have very different behavior when the frequency is above 1 KHz.

  • PDF

2.5 Inch HDD Spindle Vibration with a Flexible Base Plate

  • Heo, Baek-Ho
    • Transactions of the Society of Information Storage Systems
    • /
    • v.2 no.2
    • /
    • pp.111-116
    • /
    • 2006
  • The purpose of this paper is to study the effects of the flexibility of HDD base plates on spindle vibration via theoretical predictions and experimental measurements. The flexibility of the base plate can significantly affect HDD spindle vibration. This is the most prominent feature in 2.5 inch HDD. Nevertheless, theoretical analysis of the spindle vibration often neglects the flexibility of the non-rotating part including spindle, base plate, and top cover. Our theoretical model developed in University of Washington can include the flexibilities of spindle and base plate. As a result, our theoretical prediction generally agrees well with our experimental measurements in vibration analysis. Moreover, because of its small form factor, industrial practice is to use flanged disks instead of regular disks in vibration testing of prototypes. Our experimental measurements indicate that flanged disks and regular disks have very different behavior when the frequency is above 1 KHz.

  • PDF

A Study on the Neural Network Diagnostic System for Rotating Machinery Failure Diagnosis (신경망을 이용한 회전축의 이상상태 진단에 관한 연구)

  • 유송민;박상신
    • Tribology and Lubricants
    • /
    • v.16 no.6
    • /
    • pp.461-468
    • /
    • 2000
  • In this study, a neural network based diagnostic system of a rotating spindle system supported by ball bearings was introduced. In order to create actual failure situations, two exemplary abnormal status were made. Out of several possible data source locations, ten measurement spots were chosen. In order to discriminate multiple abnormal status, a neural network system was introduced using back propagation algorithm updating connecting weight between each nodes. In order to find the optimal structure of the neural network system reducing the information sources, magnitude of the weight of the network was referred. Hinton diagram was used to visually inspect the least sensitive weight connecting between input and hidden layers. Number of input node was reduced from 10 to 7 and prediction rate was increased to 100%.

Development of Diagnostic Expert System for Rotating Machinery Failure Diagnosis (볼베어링으로 지지된 회전축의 이상상태 진단을 위한 진단전문가 시스템의 개발)

  • 유송민;김영진;박상신
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.11
    • /
    • pp.218-226
    • /
    • 1998
  • In this study a neural network based expert system designed to diagnose operating status of a rotating spindle system supported by ball bearings was introduced. In order to facilitate practical failure situations, five exemplary abnormal status was fabricated. Out of several possible data source locations, seven most effective spots were chosen and proven to be the most successful in predicting single and multiple abnormalities. Increased signal strength was measured around where abnormality was embedded. Signal mea-surement locations producing high prediction rate were also classified. Even though multiple abnormalities were hard to be decoupled into their individual causes, proposed diagnostic system was somewhat effective in predicting such cases under certain combination of sensor locations. Among several abnormal operating conditions, highest prediction rate can be expected when signal is spoiled by the failure or damage in outer race. Proposed diagnostic system was again proven to be the most effective system in analyzing and ranking the importance of data sources.

  • PDF

A Theoretical Investigation for Improving Dynamic Characteristics of Inductive position sensor (유도형 변위 센서의 동적 특성 향상을 위한 이론적 고찰)

  • 신우철;홍준희;이동주
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.149-154
    • /
    • 2002
  • In a high speed spindle system, it is very important to monitor the state of rotating rotor. Particularly in active control spindle system, the position sensor must provide feedback to the control system on the exact position of the rotor. In order to monitor the state of a high speed spindle exactly, high accuracy and wide frequency bandwidth of sensors are important. This paper observes the factors which has an effect on dynamic performances of inductive position sensor.

  • PDF