• 제목/요약/키워드: rotating spindle

검색결과 124건 처리시간 0.025초

CNC 자동선반 고속 스핀들의 밸런싱에 관한 연구 (A Study on Balancing of High-speed Spindle of CNC Automatic Lathe)

  • 김태종;구자함;이시복;김문생
    • 한국소음진동공학회논문집
    • /
    • 제19권11호
    • /
    • pp.1214-1221
    • /
    • 2009
  • A high-speed spindle can be very sensitive to rotating mass unbalance which has harmful effect on many machine tools. Therefore, the balancing procedure to reduce vibration in rotating system is certainly needed for all high-speed spindles. So, balancing procedure was performed with a spindle-bearing system for CNC automatic lathe by using numerical procedure. The spindle is supported by the angular contact ball bearings and the motor rotor is fixed at the middle of spindle. The spindle-bearing system has been investigated using combined methodologies of finite elements and transfer matrices. The balancing was performed through influence coefficient method and the comparison was made by whirl responses between before balancing and after balancing. As a result, balancing of simple spindle model reduced whirl orbit magnitude in case of a completely assembled spindle model.

영향계수법을 이용한 고속 스핀들의 밸런싱에 관한 연구 (A Study on Balancing of High Speed Spindle using Influence Coefficient Method)

  • 구자함;김인환;허남수
    • 한국기계가공학회지
    • /
    • 제11권4호
    • /
    • pp.104-110
    • /
    • 2012
  • The spindle with a built-in motor can be used to simplify the structure of machine tool system, while the rotor has unbalance mass inevitably. A high-speed spindle can be very sensitive to rotating mass unbalance which has harmful effect on many machine tools. Therefore, the balancing procedure to reduce vibration in rotating system is certainly needed for all high-speed spindles. So, it was performed with a spindle-bearing system for CNC automatic lathe by using numerical procedure. The spindle is supported by the angular contact ball bearings and the motor rotor is fixed at the middle of spindle. The spindle-bearing system has been investigated using combined methodologies of finite elements and transfer matrices. The balancing was performed through influence coefficient method and the comparison was made by whirl responses between before balancing and after balancing. As a result, balancing of simple spindle model reduced whirl orbit magnitude in case of a completely assembled spindle model.

공작기계 주축시스템의 능동 밸런싱 장치에 관한 연구 (A Study on the Active Balancing Device for Spindle System of Machine Tools)

  • 문종덕;김봉석;김도형;이수훈
    • 한국소음진동공학회논문집
    • /
    • 제15권3호
    • /
    • pp.297-305
    • /
    • 2005
  • A high-speed spindle can be very sensitive to rotating mass unbalance which has harmful effect on many machine tools. Therefore, the balancing procedure to reducevibration in rotating system is certainly needed for all high-speed spindles. An active balancing program using influence coefficient method and an active balancing device of an electro-magnetic type have been applied to the developed high-speed spindle system in this study. A reliable gain-scheduling control using influence coefficients of the reference model although system characteristics are changed is applied. The stability of reference influence coefficients is verified by frequency response functions. The active balancing experiment for the developed high-speed spindle during operation is well performed with an active balancing program and device. As a result, controlled unbalance responses are below the vibration limit at all rotating speed ranges with critical speed.

컴퓨터 하드 디스크의 안정성을 위한 스핀들 모터 회전수 선정에 관한 연구 (A Study on Selection for the Rotating Speeds of Spindle Motors to Stabilize Computer Hard Disks)

  • 정진태
    • 소음진동
    • /
    • 제5권2호
    • /
    • pp.163-168
    • /
    • 1995
  • A criterion for the selection of spindle motor speeds in a hard disk drive (HDD) is investigated to guarantee stability and reduce nonrepeatable runout of a spining disk. Since the natural frequencies of the spining disk and the forced frequencies generated from the spindle motor depend on the rotating speed, careful consideration should be taken to avoid the resonance between the disk and motor. To do this, the natural frequencies of the spining disk are calculated and they are compared with the forced frequencies from the spindle motor.

  • PDF

레이저 변위계를 이용한 고속 회전스핀들의 필드 발란싱 기법 (Field Balancing Process of High Speed Spindle Using Laser Displacer)

  • 임성현;박영일
    • 한국생산제조학회지
    • /
    • 제26권1호
    • /
    • pp.114-120
    • /
    • 2017
  • In recent years, applications of high speed rotating bodies have diversified. It is necessary for a device rotating at high speed to be balanced to minimize vibration. It is necessary to reduce the unbalancing factor to evenly wind the yarn. In this study, we also attempted to devise a technique to minimize the unbalance that occurs while assembling the components of spindles and to simplify the balancing procedure in the field. To balance the spindle, the vibration of the rotating spindle was measured using a laser displacement meter. We also performed balancing using the influence coefficient method by considering the phase.

GYROSCOPIC EFFECT ON MODE SPLITTING IN ROTATING DISK: HDD SPINDLE SYSTEM VIBRATIONS

  • Lee, Chong-Won
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1997년도 추계학술대회논문집; 한국과학기술회관; 6 Nov. 1997
    • /
    • pp.43-49
    • /
    • 1997
  • A rotating rigid disk, attached on a flexible shaft or supported by a torsional spring, experiences precessional whirling due to gyroscopic moment loading. It is well known in rotor dynamics area that, as the rotational speed increases, the precessional mode of the rotating rigid disk starts splitting into two: forward and backward precessional modes. On the other hand, it is also well known in disk vibration area that a rotating flexible disk also shows another kind of mode splitting phenomenon due to the rotation, resulting in forward and backward traveling waves. When rotating multiple flexible disks are coupled in vibration with the supporting Flexible shaft, the associated mode splitting should be compatible with the two seemingly different vibration analysis methods. This paper investigates the possibility of fusing the precessional and traveling wave mode splittings so that the bending coupled disk vibrations in HDD spindle systems can be better understood.

  • PDF

초고속 RPM변화에 따른 니켈-크롬 합금의 밀링가공 특성 평가 (Machining Characteristics of Nickel-Chrome Alloy according to Changing with Ultra High-Speed RPM)

  • 이승준;최수창;김진근;신인동;이득우;이종열
    • 한국기계가공학회지
    • /
    • 제9권2호
    • /
    • pp.1-5
    • /
    • 2010
  • According to the high demand of hybrid components, the hybrid materials development and processing technology were increased in the industry field. Although hybrid materials have various machining technologies, the research about them has rarely been proceed. This study is to carry out results about design technology of miniaturized high-speed air spindle and machining characteristics of hybrid materials using that. We studied machining characteristics in Nickel-Chrome alloy(Ni-Cr) according to change rotating speed using miniaturized high-speed air spindle. As the following results, the change of surface shape and roughness was investigated as the processing conditions such as rotating speed of miniaturized high-speed air spindle.

압전 바이모프를 이용한 HDD 디스크-스핀들 시스템의 션트 댐핑 (Shunt Damping of HDD Disk-Spindle System Using Piezoelectric Bimorph)

  • 임수철;최승복;박영필;박노철
    • 정보저장시스템학회논문집
    • /
    • 제1권1호
    • /
    • pp.84-92
    • /
    • 2005
  • This work presents the feasibility of shunt damping far vibration suppression of the rotating HDD disk-spindle system using piezoelectric bimorph. A target vibration mode which significantly restricts the recording density increment of the drive is determined through modal analysis and a piezoelectric bimorph is designed to suppress unwanted vibration. After deriving the two-dimensional generalized electromechanical coupling coefficient of the shunted drive, the shunt damping of the system is predicted by simulating the displacement transmissibility using the coefficient. In addition, optimal design process using sensitivity analysis is undertaken in order to improve the shunt damping of the system. The effectiveness of the proposed methodology is verified through experimental implementation by observing the vibration characteristics of the rotating disk-spindle system in frequency domain.

  • PDF

밀링가공에서 공구마모와 스핀들의 비틀림 진동과의 상관관계에 관한 연구 (Research on the Effect of Cutter Wear on the Torsional Vibration of Spindle in Milling)

  • 김석관
    • 한국정밀공학회지
    • /
    • 제16권9호
    • /
    • pp.62-67
    • /
    • 1999
  • In milling, cutting tool ins directly attached to spindle and this tells that spindle can provide very useful information on the cutting tool condition such as wear or breakage. Since spindle is rotating at a high speed, measuring spindle velocity using a noncontacting measurement system gives the best information which can be obtained. Due to the force applied to spindle through cutting tool, velocity of spindle changes. And any change in cutting tool condition affects cutting force and consequently spindle vibration. With the intent of continuously monitoring cutting tool condition in intermittent machining operations in a benign manner, a noncontacting velocity measurement system using a laser Doppler velocimeter was assembled to measure spindle torsional vibration. Spindle vibration was measured and analysis of it in the frequency domain yielded a measure which corresponded to amount of cutting tool wear in milling.

  • PDF

고속 주축의 상태모니터링 및 제어 알고리즘 설계 (Design of High Speed Spindles Active Monitoring and Control Algorithm)

  • 최현진;박철우;배정섭;안정훈;최성대
    • 한국기계가공학회지
    • /
    • 제10권5호
    • /
    • pp.13-19
    • /
    • 2011
  • In this paper, the active monitoring and control system is developed. This system can monitor the status of high the speed spindle in real time during its processing, and can analyze its influence of dimensional accuracy and processing if any, and can control the machining condition to realize the machining system equipped with active monitoring and self-diagnostic features. Machining experiment was performed on 3 materials Al, Brass and S45C in order to derive the relation between active monitoring and control algorithm by the machining load. In addition, we measured surface roughness of processing specimen along with the data change of spindle rotating speed and conveying speed according to variation of machining load. Based on these experiments, we derived relations for each material that can be applied to the control algorithm to allow self control of the rotating speed and conveying speed according to the machining load.