• Title/Summary/Keyword: rotating fluid

Search Result 578, Processing Time 0.03 seconds

A Study on Vortex Pair Interaction with Fluid Free Surface (자유표면에 작용하는 와동 현상에 대한 연구)

  • Sohn K.;Ryu H. K.;Kim K. H.;Kim S. W.
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.67-72
    • /
    • 2002
  • Today, the research to examine a fact that interaction between the air and the fluid free surface affects the steady state flow and air. We proved the interaction between vortex pairs and free surface on each condition that is created by the end of delta wings. another purpose of this study is to investigate the effect of surface active material which can change the surface tension and we must consider when we refer to turbulent flow on surface tension. therefore, this research examined the growth process of vortex pairs on condition of clean, contaminated free surface and wall after we made vortex pairs through counter rotating flaps. The results of this study suggest that vortex pairs in clean free surface rise safely but the vortex pairs in contaminated free surface and rigid, no slip is made secondary vortex or rebounding. However the secondary vortex in rigid, no slip is stronger than before, and we can find the vortex shape which roll up more completely. However, these will disappear by the effect of wall.

  • PDF

Fuzzy Sky-hook Control of Semi-active Suspension System Using Rotary MR Damper (회전형 MR 댐퍼를 이용한 반능동 현가장치의 퍼지 스카이-훅 제어)

  • Cho, Jeong-Mok;Joh, Joong-Seon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.5
    • /
    • pp.701-706
    • /
    • 2007
  • Recently, a number of researches about linear magnetorheological(MR) damper using valve-mode characteristics of MR fluid have sufficiently undertaken, but researches about rotary MR damper using shear-mode characteristics of MR fluid are not enough. In this paper, we performed vibration control of shear-mode MR damper for unlimited rotating actuator of mobile robot. Also fuzzy logic based vibration control for shear-mode MR damper is suggested. The parameters, like scaling factor of input/output and center of the triangular membership functions associated with the different linguistic variables, are tuned by genetic algorithm. Simulation results demonstrate the effectiveness of the fuzzy-skyhook controller for vibration control of shear-mode MR damper under impact force.

Development of Gas Turbine Simulation Program Based on CFD

  • Jin, Sang-Wook;Kim, Jae-Min;Kim, Kui-Soon;Choi, Jeong-Yeol;Ahn, Iee-Ki;Yang, Soo-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.150-156
    • /
    • 2008
  • A program based on a 2-D CFD code has been developed to simulate a gas turbine engine. 2-D Navier-Stokes implicit code with $k-\omega$ turbulent model is used in compressor and turbine. Lumped method chemical equilibrium code with 10 species of molecular is applied to combustor with assuming perfect mixture and 100% combustion efficiency at constant pressure state. Fluid properties are shared on interfaces between engine components. Compressor supplies outlet temperature and pressure to combustor. At the same time, combustor also carries temperature and pressure to turbine. The back pressure of compressor outlet is transferred by inlet pressure of turbine. Unsteady phenomena in rotor-stator are covered by mixing-plane method. The running condition of engine can be determined only by given the inlet condition of compressor, the outlet condition of turbine, equivalence ratio and rotating speed.

  • PDF

Numerical Study on the Aerodynamic Performance of Asymmetric Vertical Folding Rotor Sail (비대칭 수직 접이식 로터세일의 성능 평가에 관한 수치해석 연구)

  • Jung Yoon Park;Janghoon Seo;Dong-Woo Park
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.61 no.2
    • /
    • pp.68-76
    • /
    • 2024
  • The rotor sail is one of the representative devices in eco-friendly wind-assisted propulsion systems that have been practically applied to commercial ships. The present study proposes an asymmetric vertical folding rotor sail (AFRS) designed for small ships, featuring asymmetric geometry along the vertical direction and the function of vertical folding. To evaluate the aerodynamic performance of rotor sail, the drag, lift and lift-to-drag ratio were derived using computational fluid dynamics. The aerodynamic performance of AFRS was compared with that of normal rotor sail with different aspect ratios and spin ratios. The effect of geometric parameters on the aerodynamic performance of AFRS was assessed by varying the asymmetric diameter ratio. The maximum improvement in lift-to-drag ratio for AFRS was approximately 12% in the considered case. Additionally, the resistance is decreased when AFRS is vertically folded without rotating. Throughout the present study, improved aerodynamic and resistance performances for AFRS were confirmed, which will successfully provide additional propulsion to small ships.

Spatial visualization of PEO viscoelastic properties on drag reduction in Taylor-Couette flow (Taylor-Couette 흐름에서의 항력 감소에 대한 PEO 점탄성 특성의 공간 가시화)

  • Mikolaj Mrozek;Hyeokgyun Moon;Jinkee Lee
    • Journal of the Korean Society of Visualization
    • /
    • v.22 no.2
    • /
    • pp.63-73
    • /
    • 2024
  • The injection of polymer can significantly reduce drag, particularly in the turbulent flow region where the mutual interaction between the polymer and turbulent vortices occurs. In this study, Taylor-Couette flow of PEO-in-water solutions with a rotating inner cylinder was analyzed. Despite the shear-thinning behaviour of PEO-in-water solutions being well-documented, for a given range of shear rates their viscosity remains nearly constant. By varying the polymer concentration, we analyzed the torque evolution of different solutions followed by the viscoelasticity effects of the polymer on the interphase transition points. The torque was analyzed using a dimensionless torque scaling method, which allows for the assessment of the fluid's momentum transport capabilities. It was observed that for low concentrations of PEO, the flow behaviour exhibited only minor differences in comparison to that of water, the Newtonian fluid. However, once the PEO concentration exceeded the polymer overlap concentration, the flow behaviour was significantly altered.

A Lubrication Design Optimization of Mechanical Face Seal (미케니컬 페이스 실의 유활 최적설계)

  • Choe, Byeong-Ryeol;Lee, An-Seong;Choe, Dong-Hun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.12
    • /
    • pp.2989-2994
    • /
    • 2000
  • A mechanical face seal is a tribo-element intended to control leakage of working fluid at the interface of a rotating shaft and its housing. Leakage of working fluid decreases drastically as the clearance between mating seal faces gets smaller. But the very small clearance may result in an increased reduction of seal life because of high wear and heat generation. Therefore, in the design of mechanical face seals a compromise between low leakage and acceptable seal life is important, ant it present a difficult and practical design problem. A fluid film or sealing dam geometry of the seal clearance affects seal lubrication performance very much, and thereby is optimization is one of the main design consideration. in this study the Reynolds equation for the sealing dam of mechanical face seals is numerically analyzed, using the Galerkin finite element method, which is readily applied to various seal geometries, to give lubrication performances, such as opening force, restoring moment, leakage, and axial and angular stiffness coefficients. Then, to improve the seal performance an optimization is performed, considering various design variables simultaneously. For the tested case the optimization ha successfully resulted in the optimal design values of outer and inner seal radii, coning, seal clearance, and balance radius while satisfying all the operation subjected constraints and design variable side-constraints, and improvements of axial and angular stiffness coefficients by 16.8% and 2.4% respectively and reduction of leakage by 38.4% have been achieved.

A Study on the Flow Characteristics of Oil-Water Separator for Marine Ship CFD (CFD에 의한 선박용 유수분리기의 유동특성에 관한 연구)

  • Kim, Byeong Jun;Kim, Sung Yoon;Roh, Chun Su;Lee, Young Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.19 no.4
    • /
    • pp.48-53
    • /
    • 2016
  • The centrifugal separator which uses gravity separation method for oil-water separation, rotating at high-speed, is one of the most commonly used device for controlling the amount of the oil in waste water collected in bilge. The IMO (International Maritime Organization) has set regulations, also known as MARPOL 73/78, for the prevention of marine pollution. In addition, DET NORSKE VERITAS (DNV) has set standards regarding the assignment of Environmental Class Notation, CLEAN or CLEAN DESIGN, of ships. One of the requirements for classification is that in addition to conforming to MARPOL 73/78, more stringent measures must be taken as well. One of these measures is to limit the oil concentration in bilge water to less than 5ppm. So in this study, an Oil-Water Separator (OWS) is used together with multiple separating plates as a filtration system to be used as an oil-water separation device. The OWS operates using centrifugal separation in which the mixture is separated by centrifugal forces. The main purpose of this paper is to present the OWS separation efficiency according to the rotation speed, mass-flow rate, the angle and the number of stacked layers of the laminated plate using Computational Fluid Dynamics (CFD). Improvements to the device will be investigated from these results.

Structural Stability of High-temperature Butterfly Valve Using Interaction Analysis

  • Lee, Moon-Hee;Son, In-Soo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.6_1
    • /
    • pp.881-888
    • /
    • 2020
  • A butterfly valve is a valve that adjusts flow rate by rotating a disc for about 90° with respect to the axis that is perpendicular to the flow path from the center of its body. This valve can be manufactured for low-temperature, high-temperature and high-pressure conditions because there are few restrictions on the used materials. However, the development of valves that can be used in a 600℃ environment is subject to many constraints. In this study, the butterfly valve's stability was evaluated by a fluid-structured interaction analysis, thermal-structure interaction analysis, and seismic analysis for the development of valves that can be used in high-temperature environments. When the reverse-pressure was applied to the valve in the structural analysis, the stress was low in the body and seat compared to the normal pressure. Compared with the allowable strength of the material for the parts of the valve system, the minimum safety factor was approximately 1.4, so the valve was stable. As a result of applying the design pressures of 0.5 MPa and 600℃ under the load conditions in the thermal-structural analysis, the safety factor in the valve body was about 3.4 when the normal pressure was applied and about 2.7 when the reverse pressure was applied. The stability of the fluid-structure interaction analysis was determined to be stable compared to the 600℃ yield strength of the material, and about 2.2 for the 40° open-angle disc for the valve body. In seismic analysis, the maximum value of the valve's stress value was about 9% to 11% when the seismic load was applied compared to the general structural analysis. Based on the results of this study, the structural stability and design feasibility of high-temperature valves that can be used in cogeneration plants and other power plants are presented.

파워 효과를 고려한 스마트 무인기의 공력해석

  • Kim, Cheol-Wan;Chung, Jin-Deog
    • Aerospace Engineering and Technology
    • /
    • v.4 no.1
    • /
    • pp.39-44
    • /
    • 2005
  • To validate the rotor performance analysis, 3D Computational Fluid Dynamics(CFD) analysis was performed for tilt rotor aeroacoustic model(TRAM). Also, 3D vehicle with rotating rotors was simulated for rotor power effect analysis. Multiple reference frame(MRF) and sliding mesh techniques were implemented to capture the effect of rotor revolution. CFD results were compared with the wind tunnel test results to validate their accuracy. At helicopter mode, CFD analysis predicted lower thrust than the wind tunnel test but CFD results showed good agreement with the test result at cruise mode. Rotor power effect decreased the lift but did not change drag and pitching moment.

  • PDF

Effect of tidal current turbine using the discharge gate of Siwha tidal power plant on the tidal power generating (시화조력발전소 방류 수문을 활용한 조류발전이 조력발전에 미치는 영향)

  • Kim, Youngjoon;Kim, Yongyeol;Cho, Yong;Ko, Jaemyoung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.236.2-236.2
    • /
    • 2010
  • The tidal current power is the power plant by installing the turbine or rotor where the tidal speed is fast. This system converting the horizontal movement to rotating energy. Tidal power turbine is needed for the dam to utilize the pressure difference. However, tidal current power using the only flow. The tidal current power was evaluated as the impact on the marine environment surrounding was less and the development of eco-friendly way. In this article, we calculated the effect of tidal current turbine on the tidal power generating by mean of CFD. With these calculated results, we checked the possibility of tidal current power using tidal power plant the discharge gate.

  • PDF