• Title/Summary/Keyword: rotating duct

Search Result 80, Processing Time 0.022 seconds

A Numerical Method & Experiments for the Aerodynamic Design of High Performance 2-Stage Axial Flow Fans (고성능 2단 축류송풍기의 공력설계를 위한 수치해석 및 실험에 관한 연구)

  • Cho, Jinsoo;Han, Cheolhui;Cho, Leesang
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.8
    • /
    • pp.1048-1062
    • /
    • 1999
  • A numerical method and experiments for the aerodynamic design of high performance two-stage axial flow fans was carried out. A vortex ring element method used for the aerodynamic analysis of the propellers was extended to the fan-duct system. Fan Performance and velocity profiles at the fan inlet and outlet are compared with experimental data for the validations of numerical method. Performance test was done based on KS B 6311(testing methods for turbo-fans and blowers). The velocity profile was obtained using a 5-hole pitot tube by the non-nulling method. The two stage axial flow fan configurations for the optimal operation conditions were set by using the experimental results for the single rotating axial flow fan and the single stage axial flow fan. The single rotating axial flow fan showed relatively low efficiency due to the swirl velocities behind rotor exit which produced pressure losses. In contrast, the single stage and the two-stage axial flow fans showed performance improvements due to the swirl velocity reduction by the stator. The peak efficiency of the two stage axial flow fan was improved by 21% and 6%, compared to the single rotating axial flow fan and the single stage axial flow fan, respectively.

A Study on Hovering Performance of Ducted Fan System Through Ground Tests and CFD Simulations (지상 시험과 CFD 시뮬레이션을 통한 덕티드 팬 시스템의 제자리 비행 성능 연구)

  • Choi, Young Jae;Wie, Seong-Yong;Yoon, Byung Il;Kim, Do-Hyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.5
    • /
    • pp.399-405
    • /
    • 2021
  • In the present study, ground tests and CFD simulations for a ducted fan system were performed to verify the hovering performance of the ducted fan system designed by KARI rotorcraft team. Six blades were composed for the ducted fan, and target rotating speed of the fan was decided to 4,000 RPM. Collective pitch angles were considered from 20 degrees to 36 degrees. The test data were obtained by increasing the rotating speed up to 4,000 RPM in 1,000 RPM increments. The CFD simulations were considered only 4,000 RPM of rotating speed. The hovering performance was represented by thrust, power, duct thrust ratio, and FM(Figure of Merit). Reliability of the performance results was ensured through the test and simulation results, and it was found that the target performance was achieved under conditions above 31 degrees of the pitch angle.

Numerical Flow Analysis of Ducted Marine Propeller with Pre-Swirl Guidevane (전치 가이드베인을 가지는 수중 덕트 프로펠러 주위의 전산 유동 해석)

  • Yu Hye-Ran;Jung Young-Rae;Park Warn-Gyu
    • Journal of computational fluids engineering
    • /
    • v.9 no.2
    • /
    • pp.62-69
    • /
    • 2004
  • The present work solved 3D incompressible RANS equations on a rotating, multi-blocked grid system to efficiently analyze ducted marine propulsor with the interaction of propeller guidevane and annular duct. To handle the interface boundary between the guidevane and the propeller, a sliding multiblock technique based on the cubic spline interpolation was applied. To validate the present code, a turbine flow was simulated and the time-averaged pressure coefficients were compared with experiment. After the code validation, the flowfield around a ducted marine propeller with pre-swirl guidevane was simulated.

Configuration of sensor array for in-duct mode detection (덕트 내 모드 분석을 위한 센서 배치에 관한 연구)

  • Jeong W.;Lee S.
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.239-242
    • /
    • 2004
  • 터보팬엔진등에서 발생하는 음장의 특징은 지배적인 음향모드 구조를 가진다는 점이다. 이러한 구조를 파악 해내는 것은 소음원을 찾아내고 그 소음원의 전파를 규명하여 소음을 저감하는데 중요한 기여를 할 수 있다. 음향모드의 검출을 위해서 많은 연구가 이루어져 왔으며 센서의 이용방식에 따라 원음장에서의 측정법, 회전형 갈퀴 (rotating rake)를 이용한 측정법, 덕트내 벽면에 센서를 분포시키는 측정법으로 나눌 수 있다. 이중 벽면에 센서를 위치시키는 방법은 다른 방법에 비해 빠르게 측정결과를 얻을 수 있으며 측정장치가 간단하다는 장점이 있다. 본 연구에서는 기존에 이 방법의 단점으로 여겨져 왔던 많은 수의 센서를 줄이는 새로운 센서 배치에 대해 기술하였으며 측정하고자 하는 주파수에 존재하는 전체 모드의 개수와 비교하여 최소한의 센서 개수를 설명하였다.

  • PDF

Numerical Analysis of Turbulent Flow Through Turbine Flow Meter (터빈유량계의 난류유동에 대한 수치해석)

  • Kim, J.B.;Park, K.A.;Ko, S.
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.573-578
    • /
    • 2000
  • Flow through turbine flow meter is simulated by solving the incompressible Navier-Stockes equations. The solution method is based on the pseudocompressibility approach and uses an implicit-upwind differencing scheme together with the Gauss-Seidel line relaxation method. The equations are solved steadily in rotating reference frames and the centrifugal force and tile Coriolis force are added to the equation of motion. The standard $k-{\varepsilon}$ model is employed to evaluate turbulent viscosity. At first the stability and accuracy of the program is verified with the flow through a square duct with a $90^{\circ}$ bend and on the flat plate.

  • PDF

Development of an Automatic Face Velocity Controller for a Fume Hood System (흄후드 시스템의 면 풍속 자동 제어기 개발)

  • Kim, Hogeol;Jeong, Kyuwon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.2
    • /
    • pp.304-309
    • /
    • 2013
  • In chemical, medical or biology laboratories Fume Hoods are basic facilities which can protect researchers from dangerous gas as blowing the contaminated air outside. After the air inside the laboratory room is sucked into the hume hood, then, it is blew out by a fan rotated by an AC induction motor. In addition, a damper controls the inside opening of a duct, which the air flows through. The face velocity, air velocity through the front door, have to be kept constant as the set value even though the opening of the door is varied. However, conventional fume hood used to be operated by operator's manual switches. So that, in this paper an automatic control system is developed which controls the face velocity by adjusting the rotating speed of the blow motor and the opening of the damper. Experiments show that this developed system can be used at such laboratories.

Measurement of Developing Turbulent Flows in a 90-Degree Square Bend with Spanwise Rotation

  • Choi Young Don;Kim Dong Chul;Lee Kun Hee
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.7
    • /
    • pp.1503-1516
    • /
    • 2005
  • Mean flow and turbulence properties of developing turbulent flows in a 90 degree square bend with span-wise rotation are measured by a hot-wire anemometer. A slanted wire is rotated into 6 orientations and the voltage outputs from them are combined to obtain the mean velocity and the Reynolds stress components. Combined effects of the centrifugal and Coriolis forces due to the curvature and the rotation of the bend on the mean motion and turbulence structures are investigated experimentally. Results show that the two body forces can either enhance or counteract each other depending on the flow direction in the bend.

Development of a Small Centrifugal Fan with CFD (수치해석에 의한 소형 원심팬 개발)

  • Chee, Seon-Koo;Park, Sung-Kwan
    • 유체기계공업학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.11-16
    • /
    • 2001
  • It is not easy to apply a small-sized centrifugal fan to the duct used for the thermal management of home electronic appliances due to complex design parameters of its blades and scroll. The main objective of this study was to develop the systematic process to design an optimal centrifugal fan based on the 3-dimensional configuration of blades obtained from the conceptual design program self-developed with the given design constraints such as the flow rate, the total pressure loss, the size of fan, and the number of rotation. The design process to find an optimal centrifugal fan for refrigerator was technologically linked in many ways. The complex grid generation system of the fan model included scroll was adopted for the numerical simulation. The FVM CFD code, FLUENT, was used to investigate the three dimensional flow pattern at the coordinate system of rotating frame and to check the optimal performance of the fan. By using this design process, a selected centrifugal fan was designed, numerically simulated, manufactured and experimentally tested in the wind tunnel. The performance curve of fan manufactured by NC process was compared with numerically obtained characteristic curve. The developed design method was proved into being excellent because these two curves were well matched.

  • PDF

Effect of the Floor on the Ventilation Performance of the Vortex Vent (바닥의 위치가 Vortex Vent의 배기성능에 미치는 영향)

  • Lee, Jin-Won;Lim, Young-Bok
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.154-158
    • /
    • 2009
  • The vortex ventilation system (VV) which uses a rotating finned swirler installed coaxially with the exhaust duct is a very effective local ventilator. VV can enhance the capture depth by a factor of 3-5 compared to the conventional exhaust hood, in the absence of any solid walls nearby. In real situations there may exist ceiling, side wall and floor, all of which can affect the flow field and suction performance by way of the no-slip condition on the walls. 3D CFD simulation was performed in order to see the effect of the floor on the capture performance of the VV. The presence of floor reduced suction flow velocity, and increased the critical rotational speed which is the rotational speed required for stable vortex formation. Flow velocity profile along the axis could be well approximated by a universal functional form when the distance from the exhaust inlet is non-dimensionalized by the distance to the floor. Capture depth, define by the distance from the exhaust inlet to a point of velocity decreased to 10% of that at the inlet, is reduced by about 10% when the floor distance is 6 times the exhaust hood diameter.

  • PDF

Assessment of RANS Models for 3-D Flow Analysis of SMART

  • Chun Kun Ho;Hwang Young Dong;Yoon Han Young;Kim Hee Chul;Zee Sung Quun
    • Nuclear Engineering and Technology
    • /
    • v.36 no.3
    • /
    • pp.248-262
    • /
    • 2004
  • Turbulence models are separately assessed for a three dimensional thermal-hydraulic analysis of the integral reactor SMART. Seven models (mixing length, k-l, standard $k-{\epsilon},\;k-{\epsilon}-f{\mu},\;k-{\epsilon}-v2$, RRSM, and ERRSM) are investigated for flat plate channel flow, rotating channel flow, and square sectioned U-bend duct flow. The results of these models are compared to the DNS data and experiment data. The results are assessed in terms of many aspects such as economical efficiency, accuracy, theorization, and applicability. The standard $k-{\epsilon}$ model (high Reynolds model), the $k-{\epsilon}-v2$ model, and the ERRSM (low Reynolds models) are selected from the assessment results. The standard $k-{\epsilon}$ model using small grid numbers predicts the channel flow with higher accuracy in comparison with the other eddy viscosity models in the logarithmic layer. The elliptic-relaxation type models, $k-{\epsilon}-v2$, and ERRSM have the advantage of application to complex geometries and show good prediction for near wall flows.